Question

The simply supported beam is subjected to a uniform distributed load, w of 30 kN/m in the negative y-direction and a point lo
Determine the absolute maximum bending moment about the z-axis in [kNm] Determine the absolute maximum bending moment about t
Determine the moment of inertia about the y-axis, ly in Determine the maximum compressive stress in the beam in [MPa]. Determ
0 0
Add a comment Improve this question Transcribed image text
Answer #1

a) Moment abor - 6 m Lo aA.. The re fore atsolnte mani m urn be ndin moment-is pres e n-al- nid point which IS mid poinh whicW.L2 ength σγ span he bea m 30 :. Absolule maximum bemting moment aboout . ai Beam is swbreched to point bad of is KN a amid15 16 Mavimum absolute BM about. Ysis is 22s KN 2 So mm 2s0 mm 226 2 12 m As the se chon is symmehical about Y-axis, ld- us slacked subse. cf tons are ahangular in shape. eac cent er σ1_ each sub sechum st secl, Sec onvd. sec 3 espechvely from the. fCent rold, dictan ce ơf- whole cal cul ared as tout: sechan (Y) ù 2400x 2.260 12Ss 30so 244 21 00 226o 30 00 13.32 m m CentFor recanu ular Se.chion moment of inex ha is amen 2 l 2 d. For sechion-1, 200 x 12 Gz 12. For sechon -2 Cz2 12 For section 3

Add a comment
Know the answer?
Add Answer to:
The simply supported beam is subjected to a uniform distributed load, w of 30 kN/m in...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The simply supported beam, with a U cross section, is subjected to a uniformly distributed force...

    The simply supported beam, with a U cross section, is subjected to a uniformly distributed force of 8 kN/m and a concentrated load of 12 kN as shown. (a) Determine the reaction at supports A and B, (b) sketch the shear diagram and the moment diagram, (c) determine the location of the neutral axis of the cross section and calculate its area moment of inertia about the neutral axis, and (d) determine absolute maximum bending stress and (e) absolute maximum...

  • The beam has the cross-sectional area shown. If the loading intensity o 25 kN/m and the...

    The beam has the cross-sectional area shown. If the loading intensity o 25 kN/m and the length of the beam L is 3 m, answer the questions that follow: 0 TALALRATEATAITTAAAAATTAAAAAL 100 mm 25 mm 25 mm 75 mm 75 mm 25 mm Determine the maximumm bending moment in the bearm in [kNm] Determine the position of the neutral axis, as a distance in [mm] measured from the bottom of the beam i.e. determine V Determine the area moment of...

  • The beam having a cross-section as shown is subjected to the distributed load w (1) Calculate...

    The beam having a cross-section as shown is subjected to the distributed load w (1) Calculate the moment of inertia, I (2) If the allowable maximum normal stress ơmax-20 MPa, determine the largest distributed load 5. w. (3) If w 1.5 kN/m, determine the maximum bending stress in the beam. Sketch the stress distribution acting over the cross-section. 100 mm 50mm 120 mm 3 m50 mm 3 m

  • With a U cross section, is subjected to uniformly distributed force 11 kN/m and a concentrated load of 12 kN as shown

    With a U cross section, is subjected to uniformly distributed force 11 kN/m and a concentrated load of 12 kN as shown. (a) the reaction at supports A and B, (b) sketch the shear diagram and the moment diagram, (c) determine the location of neutral axis of the cross section and calculate its area moment of inertia about the neutral axis, and (d) determine absolute maximum bending stress and (e) absolute maximum transverse shear stress. 

  • The simply supported truss is subjected to the central distributed load

    The simply supported truss is subjected to the central distributed load. Neglect the effect of the diagonal lacing and determine the absolute maximum bending stress in the truss The top member is a pipe having an outer diameter of 1 in. and thickness of 3/16 in., and the bottom member is a solid rod having a diameter of 1/2 in.a) Draw the shear and bending moment diagrams for the truss. Identify the maximum shear force and bending moment. b) What is...

  • ​A simply supported composite beam 3 m long carries a uniformly distributed load of intensity q= 30 kN/m (see figure)

    A simply supported composite beam 3 m long carries a uniformly distributed load of intensity q= 30 kN/m (see figure). The beam is constructed of a wood member, 100 mm wide by 150 mm deep, and is reinforced on its lower side by a steel plate 8 mm thick and 100 mm wide. (a) Find the maximum bending stresses σw and σs, in the wood and steel, respectively, due to the uniform load if the moduli of elasticity are Ew =...

  • Figure Q3 shows a simply supported beam carrying a point load. The beam hasa rectangular hollow...

    Figure Q3 shows a simply supported beam carrying a point load. The beam hasa rectangular hollow steel section as shown in Figure Q3. a. Calculate the second moment of area of the section about the horizontal (10 marks) centroidal axis. Calculate the maximum allowable value of the point load Wif the elastic bending (15 marks) b. stress in the beam is to be limited to 250 MPa. c. Calculate the maximum shear stress at q-q in the beam when the...

  • 7.26 Torking stress in either tension or compression is AMS. 92.8 mm x 185.6 mm o MPa. am 3 m long is simply supported at each end and carries a uniformly distributed load of 10 kN/m. The beam...

    7.26 Torking stress in either tension or compression is AMS. 92.8 mm x 185.6 mm o MPa. am 3 m long is simply supported at each end and carries a uniformly distributed load of 10 kN/m. The beam at rectangular cross section, 75 mm x 150 mm. Determine the magnitude and location of the peak bending ress. Also, find the magnitude of the bending stress at a point 25 mm below the upper surface at the section midway betwcen supports....

  • Q2 The 10 m long simply supported beam is subjected to a uniformly distributed load w...

    Q2 The 10 m long simply supported beam is subjected to a uniformly distributed load w = 10 kN/m throughout and a point load P =10 kN at the midspan of the beam, as shown in Figure Q2 (a). The cross section of this beam is depicted in Figure Q2 (b), which consists of three equal rectangular steel members. Self-weight of the beam is neglected. 30 mm P= 10 KN W = 10 kN/m 200 mm 5 m 5 m...

  • Q2 The 10 m long simply supported beam is subjected to a uniformly distributed load w...

    Q2 The 10 m long simply supported beam is subjected to a uniformly distributed load w = 10 kN/m throughout and a point load P =10 kN at the midspan of the beam, as shown in Figure Q2 (a). The cross section of this beam is depicted in Figure Q2 (b), which consists of three equal rectangular steel members. Self-weight of the beam is neglected. 30 mm P = 10 kN W = 10 kN/m 200 mm 5 m 5...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT