Question

Figure Q3 shows a simply supported beam carrying a point load. The beam hasa rectangular hollow steel section as shown in Fig
0 0
Add a comment Improve this question Transcribed image text
Answer #1

2DD 巳 m) 5DD 1 2 176x. 4683 200 x50D 2 2 1xx = 57995 2577-3 mn®- no 싯 a W 0. 5D0 580 kN (C) 270 kN W=FAY Man ס1.43 1472x103 m3 וץ 5구99 525773 x бу x 2x12) l00

Add a comment
Know the answer?
Add Answer to:
Figure Q3 shows a simply supported beam carrying a point load. The beam hasa rectangular hollow...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (a) Figure Q3 (a) shows a cantilever beam which is carry a load P at point...

    (a) Figure Q3 (a) shows a cantilever beam which is carry a load P at point C. (1) Sketch the deflection curve of the beam. (2 marks) t (ii) Derive the bending moment deflection, slope deflection and deflection equation at b-b using Double Integration Method. (10 marks) FIGURE Q3 (a) Calculate the maximum deflection. Given: = 10 m a = 3 m P = 25 KN El is constant d 100 mm D (5 marks) 200 mm t6 mm (b)...

  • The simply supported beam is subjected to a uniform distributed load, w of 30 kN/m in...

    The simply supported beam is subjected to a uniform distributed load, w of 30 kN/m in the negative y-direction and a point load, P of 15 kN in the negative z-direction. The total length, L of the beam is 6 m. Answer the questions that follow: 'n Eenvoudige opgelegde balk word belas met 'n uniform verspreide belasting van w 30 kN/m in die negatiewe y-rigting en 'n puntlas P = 15 kN in die negatiewe z-rigting. Die totale lengte, L...

  • The simply-supported beam having I-beam cross-section as shown in figure is to carry a uniformly distributed...

    The simply-supported beam having I-beam cross-section as shown in figure is to carry a uniformly distributed load over its entire 1.2m length. Specify the maximum allowable load if the beam is made from malleable iron, ASTM A220, class 80002. The allowable tensile stress is 164 MPa and allowable compressive stress is 412 MPa. The centroid of the section is located at 35 mm from the bottom and moment of inertia are Ix = 2.66 x 10 mm". (a) Draw loading...

  • QI A cantilever steel beam of length L 7.5 m carries both a uniformly distributed load...

    QI A cantilever steel beam of length L 7.5 m carries both a uniformly distributed load w of 20 kN/m throughout its length and a point load P of 10 kN at its free end, as shown in Figure QI (a). The beam is made from a rectangular hollow box section with a width of 300 mm and a depth of 450 mm (refer to Figure Q1 (b)). The wall thickness of the box section is constant throughout which is...

  • The beam having a cross-section as shown is subjected to the distributed load w (1) Calculate...

    The beam having a cross-section as shown is subjected to the distributed load w (1) Calculate the moment of inertia, I (2) If the allowable maximum normal stress ơmax-20 MPa, determine the largest distributed load 5. w. (3) If w 1.5 kN/m, determine the maximum bending stress in the beam. Sketch the stress distribution acting over the cross-section. 100 mm 50mm 120 mm 3 m50 mm 3 m

  • Design the cantilever beam below to take the maximum load. Calculate the load in KN to...

    Design the cantilever beam below to take the maximum load. Calculate the load in KN to 2 decimal places, if the allowable bending stress is allow = 162 MPa and the allowable shear stress is Tallow = 95 MPa. Also I = 11.918 x 10-6 m4 and the y_bar = 0.04875 m from the top of the t-beam. 150 mm 15 mm T150 mm Hi 15 mm P P 2 m 2 m

  • As shown in Figure 8, the structural member (beam) is 7m long, carries a 2 kN point load, a 1.2 kN/m uniformly distribu...

    As shown in Figure 8, the structural member (beam) is 7m long, carries a 2 kN point load, a 1.2 kN/m uniformly distributed load and is supported at points A and B. The beam is constructed from two pieces of steel plate (2 at 80mm x 8mm) that are welded together with 3mm welds. Section properties for the beam are also listed. Given the support reactions as RAv 5.8 kN and RBv 2.2 kN, as well as the shear force...

  • ​A simply supported composite beam 3 m long carries a uniformly distributed load of intensity q= 30 kN/m (see figure)

    A simply supported composite beam 3 m long carries a uniformly distributed load of intensity q= 30 kN/m (see figure). The beam is constructed of a wood member, 100 mm wide by 150 mm deep, and is reinforced on its lower side by a steel plate 8 mm thick and 100 mm wide. (a) Find the maximum bending stresses σw and σs, in the wood and steel, respectively, due to the uniform load if the moduli of elasticity are Ew =...

  • Question 4 Not yet For the simply supported wood beam shown in the figure determine the...

    Question 4 Not yet For the simply supported wood beam shown in the figure determine the maximum permissible wheel load W [kN] based upon an allowable shear stress of 0.75 MPa if q=3.72 kN/m L=249 m and d=0.157 m answered Marked out of 12.00 w Flag question Answer

  • A5.2 m long simply supported wood beam carries a uniformly distributed load of 12.9 kN/m, as...

    A5.2 m long simply supported wood beam carries a uniformly distributed load of 12.9 kN/m, as shown in Figure A. The cross-sectional dimensions of the beam as shown in Figure Bare b = 195 mm, d = 485 mm. yy = 81 mm, and yx = 167 mm. Section 3-a is located at x = 1.4 m from B. (a) At section a-a, determine the magnitude of the shear stress in the beam at point H. (b) At section a-3,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT