Question

With a U cross section, is subjected to uniformly distributed force 11 kN/m and a concentrated load of 12 kN as shown

With a U cross section, is subjected to uniformly distributed force 11 kN/m and a concentrated load of 12 kN as shown.

 (a) the reaction at supports A and B,

 (b) sketch the shear diagram and the moment diagram,

 (c) determine the location of neutral axis of the cross section and calculate its area moment of inertia about the neutral axis, and (d) determine absolute maximum bending stress and (e) absolute maximum transverse shear stress. 

image.png

1 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
With a U cross section, is subjected to uniformly distributed force 11 kN/m and a concentrated load of 12 kN as shown
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The simply supported beam, with a U cross section, is subjected to a uniformly distributed force...

    The simply supported beam, with a U cross section, is subjected to a uniformly distributed force of 8 kN/m and a concentrated load of 12 kN as shown. (a) Determine the reaction at supports A and B, (b) sketch the shear diagram and the moment diagram, (c) determine the location of the neutral axis of the cross section and calculate its area moment of inertia about the neutral axis, and (d) determine absolute maximum bending stress and (e) absolute maximum...

  • 4. (25 pt.) The beam subjected to a uniform distributed load as shown in Figure 4(a)...

    4. (25 pt.) The beam subjected to a uniform distributed load as shown in Figure 4(a) has a triangular cross-section as shown in Figure 4(b). 1) (6 pt.) Determine mathematical descriptions of the shear force function V(x) and the moment function M(x). 2) (6 pt.) Draw the shear and moment diagrams for the beam. 3) (5 pt.) What is the maximum internal moment Mmar in the beam? Where on the beam does it occur? 4) (8 pt.) Determine the absolute...

  • The beam having a cross-section as shown is subjected to the distributed load w (1) Calculate...

    The beam having a cross-section as shown is subjected to the distributed load w (1) Calculate the moment of inertia, I (2) If the allowable maximum normal stress ơmax-20 MPa, determine the largest distributed load 5. w. (3) If w 1.5 kN/m, determine the maximum bending stress in the beam. Sketch the stress distribution acting over the cross-section. 100 mm 50mm 120 mm 3 m50 mm 3 m

  • The simply supported truss is subjected to the central distributed load

    The simply supported truss is subjected to the central distributed load. Neglect the effect of the diagonal lacing and determine the absolute maximum bending stress in the truss The top member is a pipe having an outer diameter of 1 in. and thickness of 3/16 in., and the bottom member is a solid rod having a diameter of 1/2 in.a) Draw the shear and bending moment diagrams for the truss. Identify the maximum shear force and bending moment. b) What is...

  • 2. A 30 ft long simply supported beam supports a uniformly distributed load of 2 kips/ft...

    2. A 30 ft long simply supported beam supports a uniformly distributed load of 2 kips/ft over the entire span. The beam and cross section are shown below. Draw the shear and moment diagrams, find the neutral axis location, moment of inertia of the composite section, the maximum bending stress on the cross section. (40 points) 10" 2 k/ft 1-3" 30'-0"

  • The Beam shown will be subjected to a concentrated live load of 100kN, a uniformly distributed...

    The Beam shown will be subjected to a concentrated live load of 100kN, a uniformly distributed live load of 50kN/m and a uniformly distributed dead load of 20kN/m. 45.) determine the maximum reaction at B 46.) determine the maximum positive shear at C 47.) determine the maximum negative moment at B The beam shown will be subjected to a concentrated live load of 100 KN, a uniformly distributed live load of 50 kN/m and a uniformly distributed dead load of...

  • The simply supported beam is subjected to a uniform distributed load, w of 30 kN/m in...

    The simply supported beam is subjected to a uniform distributed load, w of 30 kN/m in the negative y-direction and a point load, P of 15 kN in the negative z-direction. The total length, L of the beam is 6 m. Answer the questions that follow: 'n Eenvoudige opgelegde balk word belas met 'n uniform verspreide belasting van w 30 kN/m in die negatiewe y-rigting en 'n puntlas P = 15 kN in die negatiewe z-rigting. Die totale lengte, L...

  • A rectangular cross section at a location along a beam in bending is

    (a). A rectangular cross section at a location along a beam in bending is acted upon by a bending moment and a shear force. The cross section is \(120 \mathrm{~mm}\) wide, \(300 \mathrm{~mm}\) deep and is orientated such that it is in bending about its major axis of bending. The magnitudes of the bending moment and shear force are \(315 \mathrm{kNm}\) and \(240 \mathrm{kN}\) respectively. Determine the maximum bending and shear stresses on the cross section. Plot the bending and...

  • For the cross section area shown in the íiguro below, IV = 20 kN and M =10 kN m.

    For the cross section area shown in the íiguro below, IV = 20 kN and M =10 kN m.The point at which the bending stress is maximum A BCDQUESTION 2 For the point of maximum bending stress, the distance to neutral axis = 150mm 180 mm 200mm 230 mmQUESTION 3 lx = [m4]  0.509 x10-3 3.886 x10-3 6.147x10-3 5.913 x10-4QUESTION 4 The absolute maximum bending stress [MPa]  1.65 392 8.11 5.74 QUESTION 5 The point at which the shear stress is maximum A  B C DQUESTION 6 For calculation of transverse shear,...

  • 3. The beam, with symmetric cross-section about y (all thicknesses of 1 in) as shown, is...

    3. The beam, with symmetric cross-section about y (all thicknesses of 1 in) as shown, is subjected to an internal moment of M 480 kip.in and a shear force of V 340 kip. For this system, a) determine the location of the neutral axis, y (measured from the bottom of cross-section as shown) and the area moment of inertia, I about the neutral axis (NA or z-axis), the maximum compressive, (o,nax), and tensile, (Omax): normal stresses, and b) o kip....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT