Question

4. (25 pt.) The beam subjected to a uniform distributed load as shown in Figure 4(a) has a triangular cross-section as shown
0 0
Add a comment Improve this question Transcribed image text
Answer #1

4 k nim mano 30cm zb Ant B Flour RBV -6m 12 kw RB va 12 kw Rout=12 kw om Iz bhs Efuzo Rave RBV a 4x6 =24 1 Rover RBV > 24 kwNo ന് 6w! 12 kw e 12kw (S. f)e-x 2 Shear force in Section *-* [(Sf)x.x = 12- 4* 7 = (PM) x-x 2 Bending moment in section *-*

Add a comment
Know the answer?
Add Answer to:
4. (25 pt.) The beam subjected to a uniform distributed load as shown in Figure 4(a)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • For the beam shown in the given figure:

    For the beam shown in the given figure: (a) Express the internal shear (V) and moment (M) in the beam as a function of x. (b) Draw the shear force diagram (SFD) and bending moment diagram (BMD). (c) If the area moment of inertia (I) of the beam's cross section about the neutral axis is 301.3 (10-6)m4, determine the absolute maximum bending stress (σmax) in the beam. 

  • (Q2) For the shown beam, a uniformly distributed load is applied across the beam length. The...

    (Q2) For the shown beam, a uniformly distributed load is applied across the beam length. The beam cross section is symmetrical. The beam length and cross-sectional dimensions are shown in figure. 40 mm B С 300 mm 10 N/m N A 40 mm 300 mm 40 mm 500 mm 1- Plot the Shear Force Distribution (with values) 2- Plot the Bending Moment Distribution (with values) 3. Determine the maximum Moment value and indicate the most critical section 4- Calculate the...

  • The simply supported beam, with a U cross section, is subjected to a uniformly distributed force...

    The simply supported beam, with a U cross section, is subjected to a uniformly distributed force of 8 kN/m and a concentrated load of 12 kN as shown. (a) Determine the reaction at supports A and B, (b) sketch the shear diagram and the moment diagram, (c) determine the location of the neutral axis of the cross section and calculate its area moment of inertia about the neutral axis, and (d) determine absolute maximum bending stress and (e) absolute maximum...

  • 4. A T-shaped cross-sectional beam is loaded as shown in the figure. Determine the following a....

    4. A T-shaped cross-sectional beam is loaded as shown in the figure. Determine the following a. Sketch the internal shear force and bending moment diagrams for the beam. b. Calculate the maximum magnitude of the bending stress. Indicate where this occurs on the cross-section and along the length of the beam. c. Calculate the transverse shearing stress at the centroid of the cross-section using the maximum magnitude of the transverse shear force. - 200 mm 8 KN 1.5 kN/m 20...

  • 4. (30%) For a beam with a T-section as shown, the cross-sectional dimensions of 12 mm....

    4. (30%) For a beam with a T-section as shown, the cross-sectional dimensions of 12 mm. The centroid is 75 mm, h = 90 mm, t the beam are b 60 mm, h, at C and c 30 mm. At a certain section of the beam, the bending moment is M 5.4 kN m and the vertical shear force is V= 30 kN. (a) Show that the moment of inertia of the cross-section about the z axis (the neutral axis)...

  • With a U cross section, is subjected to uniformly distributed force 11 kN/m and a concentrated load of 12 kN as shown

    With a U cross section, is subjected to uniformly distributed force 11 kN/m and a concentrated load of 12 kN as shown. (a) the reaction at supports A and B, (b) sketch the shear diagram and the moment diagram, (c) determine the location of neutral axis of the cross section and calculate its area moment of inertia about the neutral axis, and (d) determine absolute maximum bending stress and (e) absolute maximum transverse shear stress. 

  • The cantilever beam shown is subjected to a moment at A and a distributed load that...

    The cantilever beam shown is subjected to a moment at A and a distributed load that acts over segment BC, and is fixed at C. Determine the reactions at the support located at C. Then write expressions for shear and bending moment as a function of their positions along the beam. Finally, use these expressions to construct shear and bending moment diagrams Draw a free-body diagram of the beam on paper. Use your free-body diagram to determine the reactions at...

  • A beam is subjected to distributed loading as shown in Figure Q4. (a) Determine the reaction...

    A beam is subjected to distributed loading as shown in Figure Q4. (a) Determine the reaction at points B and C on the beam. (b) Give the expressions of the shear (V) and bending-moment (M) as functions of x in the whole beam and then draw their diagrams. (6 marks) (14 marks) 200 N/m -3 m- -4.5 m -3 m- Figure Q4

  • The simply supported beam is subjected to a uniform distributed load, w of 30 kN/m in...

    The simply supported beam is subjected to a uniform distributed load, w of 30 kN/m in the negative y-direction and a point load, P of 15 kN in the negative z-direction. The total length, L of the beam is 6 m. Answer the questions that follow: 'n Eenvoudige opgelegde balk word belas met 'n uniform verspreide belasting van w 30 kN/m in die negatiewe y-rigting en 'n puntlas P = 15 kN in die negatiewe z-rigting. Die totale lengte, L...

  • The beam shown is subjected to a shear of V = 14 kip

    The beam shown is subjected to a shear of V = 14 kip. The area moment of inertia of the beam's cross section about its neutral axis is 56 in4. Determine following: (a) Shear stress at point A if it is located in the flange, (b) Shear stress at point A if it is located in the web, and (c) The maximum shear stress acting on the beam cross section.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT