Question

( Electric - Gauss's Law ) I dont understand, I need urgent help.

33a84597-5108-4f94-83ad-06eedc43a55f.jpg

A very long conducting cylinder of radius \(\mathrm{R}\) earries a uniform surface charge with a constant surface charge density of \(\sigma\).

a) Find electric field everywhere created by this cylinder.

b) Find the potential difference between a point \(2 R\) away from the central axis of the cylinder and the surface of the cylinder \((\Delta V=V(r=2 R)-V(r=R)=?)\)

c) Find the work done by \(\vec{E}\) - field on a point charge \(q_{0}\) if this point charge moves from the surface of the cylinder to a point \(2 R\) away from the central axis of the cylinder.

1 1
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 9 more requests to produce the answer.

1 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
( Electric - Gauss's Law ) I dont understand, I need urgent help.
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Gauss's Law in 3, 2, and 1 Dimension

    Gauss's Law in 3, 2, and 1 Dimension Gauss's law relates the electric flux \(\Phi_{E}\) through a closed surface to the total charge \(q_{\text {end }}\) enclosed by the surface:Part ADetermine the magnitude \(E(r)\) by applying Gauss's law.Express \(E(r)\) in terms of some or all of the variables/constants \(q, \tau\), and \(\epsilon_{0}\).Part BBy symmetry, the electric field must point radially outward from the wire at each point; that is, the field lines lie in planes perpendicular to the wire. In solving for the magnitude of...

  • Please explain EXECUTE the solution as follows Learning Goal: To practice Problem-Solving Strategy 22.1: Gauss's Law...

    Please explain EXECUTE the solution as follows Learning Goal: To practice Problem-Solving Strategy 22.1: Gauss's Law Partc An infinite cylindrical rod has a uniform volume charge density ρ (where ρ > 0). The cross section of the rod has radius re. Find the magnitude of the electric field E at a distance r from the axis of the rod. Assume that r < Find the magnitude E of the electric field at a distance r from the axis of the...

  • ery long dielectric cylinder of radius a and dielectric constant er is placed in a field Eo perpendicular to its A v axis. The electric potential inside the cylinder is r in and the electric potentia...

    ery long dielectric cylinder of radius a and dielectric constant er is placed in a field Eo perpendicular to its A v axis. The electric potential inside the cylinder is r in and the electric potential outside the cylinder is The electric field inside of the cylinder is and the electric field outside the cylinder is n11 out-_E Find the surface charge density and take the cylinder axis to be the z-axis and take Eo - Eo ery long dielectric...

  • Physics 222 Name: Task 7: Electric Flux and Gauss's Law Objective: To illustrate the concept of...

    Physics 222 Name: Task 7: Electric Flux and Gauss's Law Objective: To illustrate the concept of "flux" and to avoid performing the integral in Gauss's Law for Electricity 1. A cylindrical Gaussian surface (length = 0.80 m, diameter = 0.20 m) is drawn in an area of a non-uniform electric field, directed at all points in the ex direction (i.e. horizontal to the right). The field varies with x, but does not vary with respect to y or z. The...

  • 6. An infinite cylinder of radius R has a uniform charge density of ρ in its...

    6. An infinite cylinder of radius R has a uniform charge density of ρ in its interior, and a surface charge side and outside the cylinder. Be density of -pR on its surface. Find the electric field everywhere in clear about both the magnitude and direction of the field.

  • 6. An infinite cylinder of radius R has a uniform charge density of p in its...

    6. An infinite cylinder of radius R has a uniform charge density of p in its interior, and a surface charge density of -pR on its surface. Find the electric field everywhere inside and outside the cylinder. Be clear about both the magnitude and direction of the field.

  • To practice Problem-Solving Strategy 22.1: Gauss's Law. An infinite cylindrical rod has a uniform volume charge...

    To practice Problem-Solving Strategy 22.1: Gauss's Law. An infinite cylindrical rod has a uniform volume charge density ρ (where ρ>0). The cross section of the rod has radius r0. Find the magnitude of the electric field E at a distance r from the axis of the rod. Assume that r<r0. a) Find the magnitude E of the electric field at a distance r from the axis of the cylinder for r>r0. Express your answer in terms of some or all...

  • Please help me with this problem. I don't understand how to set it up and how...

    Please help me with this problem. I don't understand how to set it up and how to calculate the solutions. An infinitely long solid insulating cylinder of radius a 3.3 cm is positioned with its symmetry axis along the z-axis as shown. The cylinder is uniformly charged with a charge density ρ = 43 HC/m3. Concentric with the cylinder is a cylindrical conducting shell of inner radius b 12.6 cm, and outer radius c-15.6 cm. The conducting shell has a...

  • 2.1 In this problem we find the electric field on the axis of a cylindrical shell...

    2.1 In this problem we find the electric field on the axis of a cylindrical shell of radius R and height h when the cylinder is uniformly charged with surface charge density . The axis of the cylinder is set on the z-axis and the bottom of the cylinder is set z = 0 and top z = h. We designate the point P where we measure the electric field to be z = z0. (See figure.) You will use...

  • An infinitely long solid insulating cylinder of radius a = 5.5 cm is positioned with its...

    An infinitely long solid insulating cylinder of radius a = 5.5 cm is positioned with its symmetry axis along the z-axis as shown. The cylinder is uniformly charged with a charge density rho = 25 mu C/m^3. Concentric with the cylinder is a cylindrical conducting shell of inner radius b = 14.4 cm, and outer radius c = 17.4 cm. The conducting shell has a linear charge density lambda = -0.42 mu C/m. 1) What is E_y(R), the y-component of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT