Question

Question 1 If Glycerine is pumped through a horizontal pipe, with 50 mm diameter and 65 m length, at a rate Q-4.5x10 m/s. If

0 0
Add a comment Improve this question Transcribed image text
Answer #1

In the given problem Reynolds number is calculated using the formula Re = \rho VD / \mu

Then for laminar flow friction factor(f) = 64/Re

Total head loss(\Deltah) = fLV2 / 2gd

For wall shear stress the formula \tau w = (\Deltap/\Deltax)*(R/2)

Given, diameter of pipe (d) - somm= 0.05m length of pipe (1)= 65m flow rate (0)= 4.5x10 muß sec density (e) = 1260 kg/m² (i)(1) Total head lois (oh) sh= ELV² agd 0.399 x 65* 2.29) 2x9.81* 0.05 on = 138-82m] (iv) Wall shear stress (tw): we trou, w e​​​​​​​

Add a comment
Know the answer?
Add Answer to:
Question 1 If Glycerine is pumped through a horizontal pipe, with 50 mm diameter and 65...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • LECTURE Sp 1. Oil (relative density 0.85, dynamic viscosity-4.5x10-2kg/m-s) flows through a 75 mm diameter pipe...

    LECTURE Sp 1. Oil (relative density 0.85, dynamic viscosity-4.5x10-2kg/m-s) flows through a 75 mm diameter pipe with a mean velocity of 0.65 m/s. Determine i. the pressure drop in a 500 m length, ii- the friction factor, ii the head loss due to friction, iv. the maximunn velocity, and v. the velocity at 30 mm from the pipe wall. (10 marks) 46 2 9 3 8 4 5 6

  • 2. (20 marks) The fully-developed, laminar fluid flow through a circular pipe is considered to be...

    2. (20 marks) The fully-developed, laminar fluid flow through a circular pipe is considered to be one dimensional with a velocity profile given by u(r) = Umax(1 - 52/R2), where R is the radius of the pipe, r is the radial distance from the center of the pipe, and Umax is the maximum flow velocity at the center of the pipe. a) Derive a relation for the drag force applied by the fluid on a section of the pipe of...

  • Question 3 [20 marks] Water (density p1000 kg/m2; dynamic viscosity 0.001 Pa-s) flows steadily through a horizontal, st...

    Question 3 [20 marks] Water (density p1000 kg/m2; dynamic viscosity 0.001 Pa-s) flows steadily through a horizontal, straight pipe with circular cross section of diameter D=0.2 m. The volumetric flow rate is 0.01 m°/s. Argue that this is turbulent flow. [4 marksl а. Pressure drop in the pipe is due to friction. The pressure drop per unit length can be written as Др 4f L with U the average velocity in the pipe and fthe friction factor. Given the pipe...

  • Clean engine oil is pumped through a pipe %)n, in diameter and 10 ft long, as shown. Pressure is ...

    Clean engine oil is pumped through a pipe %)n, in diameter and 10 ft long, as shown. Pressure is atmospheric both at the inlet to the pump and at the exit from the pipe. The average velocity of the oil is 1.5 ft/s Assuming fully-developed laminar tlow, calculate the pressure rise across the pump (in psia) and the power input of the pump (in hp) if the oil temperature is a) 70°F 4. b) 40°F atn Clean engine oil is...

  • H2.3 Consider water at 20°C flowing through a horizontal pipe of diameter 15 cm and length 10 m. ...

    H2.3 Consider water at 20°C flowing through a horizontal pipe of diameter 15 cm and length 10 m. The flowrate is 0.021 m3/s and the wall shear stress is 5.76 N/m2. Assume fully developed flow. a. Verify that the flow is turbulent b. Determine the pressure drop [N/m2 c. Estimate the viscous sublayer thickness [mm], i.e., where y+ 5 d. Compare results of part c. with typical pipe roughness (see Table 8.1 in text and comment on implication e. Using...

  • Poiseuille Flow: Consider a pressure-driven (gradient DeltaP/L = (P_in -P_out)/L) flow of a fluid of viscosity...

    Poiseuille Flow: Consider a pressure-driven (gradient DeltaP/L = (P_in -P_out)/L) flow of a fluid of viscosity mu in a tube of circular cross-section with radius R and length L. Starting from the NSE, show for fully-developed, steady flow, that the volumetric flow rate is:[10] Show that the magnitude of the shear stress T_rz at the wall is: Using your answer from parts (a) and (b), obtain an expression for the friction factor f in terms of the Reynolds number Re...

  • Question 3 (a) Water flows through a horizontal pipeline of constant 400 mm diameter in a...

    Question 3 (a) Water flows through a horizontal pipeline of constant 400 mm diameter in a water treatment plant. The pipe bends through a 70° angle. In order to design a thrust block for the bend, calculate the magnitude and line of action of the force exerted by the water on the pipe. The discharge through the pipe is 0.4 m/s. The water pressure at the inlet is equivalent to 22 m head of water. [10 marks] (b) Oil of...

  • (a) A horizontal pipe of diameter 10 cm carries crude oil from A to C as...

    (a) A horizontal pipe of diameter 10 cm carries crude oil from A to C as shown in Figure 4. At a point B, midway between A and C, oil leaks at a volume flow rate of QL . The pressure drop per unit length along AB is 640 Pa/m and along BC is 600 Pa/m. Determine the leakage flow rate QL . The density of oil is 800 kg/m3 and its dynamic viscosity is 0.1 N.s/ m2 . You...

  • Question (a) Sulphuric acid is flowing through a pipe (2.5 inch diameter, 50 ft length) in...

    Question (a) Sulphuric acid is flowing through a pipe (2.5 inch diameter, 50 ft length) in a velocity of 0.006 m2/s. The sulphuric acid has a viscosity of 25 mN.s/m² and density of 1680 kg/m² while the roughness of the pipe surface is 1.3 mm. If the operating temperature is 290K, determine fluid flow (i.e. laminar, turbulent or others). (Given that 1 m= 39.37 inch) (b) Define pump, suction head, impelling head and the total head of a pump. (c)...

  • Q5. Sketching a suitable control volume, show that the velocity profile V(r) for steady, fully laminar...

    Q5. Sketching a suitable control volume, show that the velocity profile V(r) for steady, fully laminar flow in a horizontal pipe is given by V(r)- whereis is the pressure drop per unit length of pipe, R is the pipe radius and u the dynamic viscosity of the fluid. (10 marks) Thereafter develop Poiseuille's law for the volume flow rate O in the form SuL (10 marks) Hence show that the head loss h is given by where Vis the mean...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT