Question

I need your help

1. Answer the following questions for the system below. (60 pts) (a) Derive the equation of motion in a matrix form: [m]{x}+[

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Ymx 4¢ F - collot motion umo D m72147-27 minuta Free Body diagram equation n matrix form J 63.3+(** 3:7C*}-{usion] let Xi =

Add a comment
Know the answer?
Add Answer to:
I need your help 1. Answer the following questions for the system below. (60 pts) (a)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • M1 m2 Figure 1: 2dof 1. Consider the system above. Derive the equation of motion and calculate th...

    m1 m2 Figure 1: 2dof 1. Consider the system above. Derive the equation of motion and calculate the mass and stiffness matrices Note that setting k30 in your solution should result in the stiffness matrix given by Eq. (4.9). a. Calculate the characteristic equation from problem 4.1 for the case m1-9 kg m2-1 kg ki-24 N/m 2 3 N/m k 3 N/m and solve for the system's natural frequencies. b. Calculate the eigenvectors u1 and u2. c. Calculate 띠(t) and...

  • 1. For the mechanical system shown, A. Obtain the differential equations and set them in the...

    1. For the mechanical system shown, A. Obtain the differential equations and set them in the matrix form. 2m B. find the natural frequencies and related amplitude ratios as functions of m and k. C. For m 4 Kg, k= 100 N/m, x,(0) 1, X2(0) 1, 1 (0) 0, *2(0) 0, find x (t) and x2 (t) in normal and general vibrations E WW 1. For the mechanical system shown, A. Obtain the differential equations and set them in the...

  • 1 1 2 m2 1. Consider the system above. Derive the equation of motion and calculate the mass and s...

    Please provide any MATLAB code you used for plotting. 1 1 2 m2 1. Consider the system above. Derive the equation of motion and calculate the mass and stiffness matrices. a) Calculate the characteristic equation forthe case m 9 kg m 1 kg k 24 N/m k2 3 N/mk3- 3 N/m and solve for the system's natural frequencies. b.) Calculate the eigenvectors u1 and u2 c.) Calculate xi(t) and x2(t), given x2(0)-1 mm, and xi(0) - vz(0) -vi(0) 0 d.)...

  • Problem 1: The system in Figure 1 comprises two masses connected to one another through a...

    Problem 1: The system in Figure 1 comprises two masses connected to one another through a spring. The block slides without friction on the support and has mass mi. The disk has radius a, mass moment of inertia I, and mass m2. The disk rolls without slipping on the support. The springs are unstretched when x(t) = x2(t) = 0. 2k 3k , m Figure 1: System for Problem 1 (a) Derive the differential equations of motion for the system...

  • Please answer the questions for Part 1 and Part 2 showing all steps, using the provided...

    Please answer the questions for Part 1 and Part 2 showing all steps, using the provided data values. Many thanks. M2 2 C2 2' 2 2 C2 2'2 Spring steel Mi k1 C1 2'2 1 C1 Base y(t) Base movement Figure 2 shows a shear building with base motion. This building is modelled as a 2 DOF dynamic system where the variables of ml-3.95 kg, m2- 0.65 kg, kl-1200 N/m, k2- 68 N/m, cl- 0.40 Ns/m, c2- 0.70Ns/m The base...

  • Q3. For the system in Figure 3 where and θ2 are the rotational angles, and are the rotary inertias of the two disks with radius r and 2r, respectively, 2r (1) Find its total kinetic energy, total pot...

    Q3. For the system in Figure 3 where and θ2 are the rotational angles, and are the rotary inertias of the two disks with radius r and 2r, respectively, 2r (1) Find its total kinetic energy, total potential energy and Lagrangian in terms of, and (2) Derive the equations of motion using Lagrangian equation method, (3) Put the equations of motion in matrix form, and (4) Calculate the natural frequencies and the associated mode shapes if m-30 g, 4-8 x...

  • For the following 2DOF linear mass-spring-damper system r2 (t) M-2kg K -18N/m C- 1.2N s/m i(t) - ...

    For the following 2DOF linear mass-spring-damper system r2 (t) M-2kg K -18N/m C- 1.2N s/m i(t) - 5 sin 2t (N) f2(t)-t (N) l. Formulate an IVP for vibration analysis in terms of xi (t) and x2(t) in a matrix form. Assume that the 2. Solve an eigenvalue problem to find the natural frequencies and modeshape vectors of the system 3. What is the modal matrix of the system? Verify the orthogonal properties of the modal matrix, Ф, with system...

  • i dont need A through F i just need help on E and F. 3. Electrical...

    i dont need A through F i just need help on E and F. 3. Electrical Oscillators: Consider the electric circuit shown below. D Three capacitors (two with capacitance and one with capacitance G) are charged with potentially different charges , 42, Q and connected with the polarity shown to two inductors of inductance L In this problem we will explore how to convert the physical properties of this system into a linear map and how, with a strategic choice,...

  • Could you please answer all of the following questions? 1. A 3 kg object attached to...

    Could you please answer all of the following questions? 1. A 3 kg object attached to a spring oscillates with an amplitude of 15 cm and a period of 2 s. At a time t = 0.5 s, the object's position is x = 9.1 cm. Determine a) the spring constant of the spring b) the total energy of the system (in joules) c) the maximum speed of the object d) the position of the object as a function of...

  • please answer all prelab questions, 1-4. This is the prelab manual, just in case you need...

    please answer all prelab questions, 1-4. This is the prelab manual, just in case you need background information to answer the questions. The prelab questions are in the 3rd photo. this where we put in the answers, just to give you an idea. Lab Manual Lab 9: Simple Harmonic Oscillation Before the lab, read the theory in Sections 1-3 and answer questions on Pre-lab Submit your Pre-lab at the beginning of the lab. During the lab, read Section 4 and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT