Question

m1 m2 Figure 1: 2dof 1. Consider the system above. Derive the equation of motion and calculate the mass and stiffness matrice

0 0
Add a comment Improve this question Transcribed image text
Answer #1

IM Ki yvn Cal cu 3 23 ナ 2x9 81 ± 243 O*a 18 8 Ls381243 18 uo 812u3, 1 1243 -116.243 2 ,243 12s -6.ysa , ,9 3.93 01니 -A2 2 -G.gl)Ga31)2+2# 2 2. 124.59 3 G2.S4 (2541) →

Add a comment
Know the answer?
Add Answer to:
M1 m2 Figure 1: 2dof 1. Consider the system above. Derive the equation of motion and calculate th...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1 1 2 m2 1. Consider the system above. Derive the equation of motion and calculate the mass and s...

    Please provide any MATLAB code you used for plotting. 1 1 2 m2 1. Consider the system above. Derive the equation of motion and calculate the mass and stiffness matrices. a) Calculate the characteristic equation forthe case m 9 kg m 1 kg k 24 N/m k2 3 N/mk3- 3 N/m and solve for the system's natural frequencies. b.) Calculate the eigenvectors u1 and u2 c.) Calculate xi(t) and x2(t), given x2(0)-1 mm, and xi(0) - vz(0) -vi(0) 0 d.)...

  • Mechanical vibration subject 3. a. Consider the system of Figure 3. If C1 = C2 =...

    Mechanical vibration subject 3. a. Consider the system of Figure 3. If C1 = C2 = C3 = 0, develops the equation of motion and predict the mass and stiffness matrices. Note that setting k3 = 0 in your solution should result in the stiffness matrix given by [ky + kz -k2 kz b. constructs the characteristics equation from Question 3(a) for the case m1 = 9 kg, m2 = 1 kg, k1 = 24 N/m, k2 = 3 N/m,...

  • 4.9. Draw a Simulink diagram to represent the system shown in Example 4.3. Plot x, and...

    4.9. Draw a Simulink diagram to represent the system shown in Example 4.3. Plot x, and x2 for the first 50 seconds when the applied force fal increases from 0 to 10 N at t = 1 s. The parameter values are M1 = M2 = 10 kg, B = 20 Ns/m, and Ki = K2 = 10 N/m. *4.10. Draw a Simulink diagram to represent the system shown in Example 4.4. Plot the first 10 seconds of the response...

  • Here we consider the two masses m1 and m2 connected this time by springs of stiffnesses...

    Here we consider the two masses m1 and m2 connected this time by springs of stiffnesses k1, k2 and k3 as shown in the figure below. The movement of each of the 2 masses relative to its position of static equilibrium is designated by x1(t) and x2(t). 1. Demonstrate that the differential equation whose unknown is the displacement x1(t) is written as follows: 2. Determine the second differential equation whose unknown is the displacement x2(t). 3. Determine the free oscillatory...

  • Differentiel equations We consider here, the two masses m1 and m2 connected this time by springs...

    Differentiel equations We consider here, the two masses m1 and m2 connected this time by springs of stiffnesses k1, k2 and k3 as indicated in the figure below. We denote by x1 (t) and x2 (t) the movement of each of the 2 masses relative to its static equilibrium position. 1. Prove that the differential equation whose unknown is the displacement x1 (t) is written in the following form: 2. Deduce the second differential equation whose unknown is the displacement...

  • EXERCISE 2 The following system is composed by two bodies of mass m, and m2 and five identical strings of stiffness k....

    EXERCISE 2 The following system is composed by two bodies of mass m, and m2 and five identical strings of stiffness k. Friction and any other dissipative terms are negligible. k Draw the free body diagrams for the two bodies. a) | y1 |F b) Write the equation of motion in matrix form, expressing the content of each matrix/vector m1 c) Calculate the natural frequencies of the system, knowing that m1 1 kg, m2 2 kg and k = 1000...

  • We consider 2 coupled harmonic oscillators, as shown in the diagram below The mass m1 is...

    We consider 2 coupled harmonic oscillators, as shown in the diagram below The mass m1 is subjected to an external force F(t). 1) Construct the system of differential equations whose unknowns are the displacements x1 (t) and x2 (t) of each of the 2 masses. 2) Solve x1 (t) and x2 (t) in the case where m1 = 1kg; m2 = 2kg; k = 1 N / m; F (t) = 0 and x1 (0) = 0; ?1′ (0) =...

  • We consider 2 coupled harmonic oscillators, as shown in the diagram below. The mass m1 is...

    We consider 2 coupled harmonic oscillators, as shown in the diagram below. The mass m1 is subjected to an external force F (t). 1. Construct the system of differential equations whose unknowns are the displacements x1 (t) and x2 (t) of each of the 2 masses. (5 points). 2. Solve x1(t) and x2(t) in the case where m1 = 1kg; m2 = 2kg; k = 1 N / m; F(t) = 0 and x1(0) = 0; ?1′(0) = 0; x2(0)...

  • We consider here, the two masses m1 and m2 connected this time by springs of stiffnesses...

    We consider here, the two masses m1 and m2 connected this time by springs of stiffnesses k1, k2 and k3 as shown in the figure below. We denote x1 (t) and x2 (t) as the movement of each of the 2 masses relative to its position of equilibrium static. 1) Prove that the differential equation whose unknown is the displacement is written in the following form: 2) Deduce the second differential equation whose unknown is the displacement 3) Determine the...

  • We consider here, the two masses m1 and m2 connected this time by springs of stiffnesses...

    We consider here, the two masses m1 and m2 connected this time by springs of stiffnesses k1, k2 and k3 as shown in the figure below. We denote by x1(t) and x2(t) the movement of each of the 2 masses relative to its position of equilibrium static. 1. Prove that the differential equation whose unknown is the displacement x1(t) is written in the following form: (3 points) 2. Deduce the second differential equation whose unknown is the displacement x2(t) (3...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT