Question

a 5.00 kg ball moving to the right at a velocity of + 2.00 m /...

a 5.00 kg ball moving to the right at a velocity of + 2.00 m / son a frictionless table collides head on withg a stationary with a7.50 kg ball find the velocites of the balls if the collision is(a) elastic and (b) completely inelastic

Please use the Vapproach=Vseperate way instead of Kinetic Energy.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Dear student,

Find this solution.if any issue with that don't forget to write in comment section.I will rectify them as soon as possible.

If you find the solution helpful and kindly RATE THE ANSWER it would be appreciated.

Your rating is important to me.

Thanks for asking..

Add a comment
Know the answer?
Add Answer to:
a 5.00 kg ball moving to the right at a velocity of + 2.00 m /...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 8. (9 pts.) A 4.00-kg ball, moving to the right at a velocity of +2.00 mis...

    8. (9 pts.) A 4.00-kg ball, moving to the right at a velocity of +2.00 mis on a frictionless table, collides head-on with a stationary 6.50-kg ball. Find the final velocities of the balls if the collision is completely inelastic (the balls stick together). 9. (12 pts.) A 2.5-kg ball and a 5.0-kg ball have an elastic collision. Before the collision, the 2.5-kg ball was at rest and the other ball had a speed of 3.5 m/s. (a) What is...

  • A 2.10-kg ball, moving to the right at a velocity of +4.57 m/s on a frictionless...

    A 2.10-kg ball, moving to the right at a velocity of +4.57 m/s on a frictionless table, collides head-on with a stationary 7.00-kg ball. Find the final velocities of (a) the 2.10-kg ball and of (b) the 7.00-kg ball if the collision is elastic. (c) Find the final velocity of the two balls if the collision is completely inelastic.

  • A 1.20-kg ball, moving to the right at a velocity of +2.85 m/s on a frictionless...

    A 1.20-kg ball, moving to the right at a velocity of +2.85 m/s on a frictionless table, collides head-on with a stationary 6.20-kg ball. Find the final velocities of (a) the 1.20-kg ball and of (b) the 6.20-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.

  • A 2.60-kg ball, moving to the right at a velocity of +2.54 m/s on a frictionless...

    A 2.60-kg ball, moving to the right at a velocity of +2.54 m/s on a frictionless table, collides head-on with a stationary 7.80-kg ball. Find the final velocities of (a) the 2.60-kg ball and of (b) the 7.80-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.

  • (25 Points) A 10.0 kg ball, moving to the right at a velocity of 4.00m/s on...

    (25 Points) A 10.0 kg ball, moving to the right at a velocity of 4.00m/s on a frictionless table, collides head-on with a 5.00kg ball at rest. Find velocities of the balls is the collision is (a) (15 points) elastic and (b) (10 points) completely inelastic

  • A 5.10-kg ball, moving to the right at a velocity of +2.05 m/s on a frictionless...

    A 5.10-kg ball, moving to the right at a velocity of +2.05 m/s on a frictionless table, collides head-on with a stationary 7.70-kg ball. Find the final velocities of the balls if the collision meet the following conditions. ( a) elastic 5.1-kg ball = ? m/s 7.7-kg ball = ? m/s

  • A ball of mass 2.00 kg is traveling east at 5.00 m/s. Another ball of mass...

    A ball of mass 2.00 kg is traveling east at 5.00 m/s. Another ball of mass 4.00kg is traveling west at 2.00 m/s. The two balls meet in a head-on-perfectly elastic collision. If the collision is perfectly (completely) elastic, what is the velocity (magnitude and direction) of each ball after the collision?

  • Ball A, of mass 0.6kg, is initially moving to the right at 4 m/s. Ball B,...

    Ball A, of mass 0.6kg, is initially moving to the right at 4 m/s. Ball B, of mass 1.8kg, is initially to the right of ball A and moving to the right at 2 m/s. After the two balls collide, ball B is moving at 3 m/s in the same direction as before. What is the velocity of ball A after this collision. Is this collision elastic or inelastic? What is the fractional change in kinetic energy?

  • Collisions and Kinetic Energy ** Two billiard balls are initially traveling toward each other with Ball...

    Collisions and Kinetic Energy ** Two billiard balls are initially traveling toward each other with Ball 1 having a velocity of 2.00 m/s to the right and Ball 2 having a velocity of 8.00 m/s to the left. The balls undergo an elastic, head-on collision. Find their final velocities. (Define the positive direction to be to the right.) Part 1 + First consider two identical objects with equal mass, one is at rest and the other has a velocity of...

  • A 6.00 kg bowling ball moving at 10.0 m/s collides with a 1.60 kg bowling pin,...

    A 6.00 kg bowling ball moving at 10.0 m/s collides with a 1.60 kg bowling pin, scattering it with a speed of 8.00 m/s and at an angle of 38.5 with respect to the initial direction of the bowling ball (*) Calculate the final velocity (magnitude in mys and direction in degrees counterclockwise from the original direction of the bowling ball magnitude m/s direction counterclockwise from the original direction of the bowing ball (b) Ignoring rotation, what was the original...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT