Question

A propagating wave is described by the wave function (in SI units) y(x, t) = 3 sin(4.x + 2.t) What can be said about the dire

0 0
Add a comment Improve this question Transcribed image text
Answer #1

here,

y(x,t) = 3 sin(4x + 2t)

compairing with equation

y(x,t) = A * sin(kx + wt)

on compairing ,

K = 4 m^-1

w = 2 rad/s

the speed of wave , v = f * lamda

v = (w/2pi) * ( 2*pi /K)

v = (2/4) = 0.5 m/s

as there is +ve sign between kx and wt

the wave will move in -x direction

the correct option is (Wave propagates to the left with the speed 0.5 m/s)

Add a comment
Know the answer?
Add Answer to:
A propagating wave is described by the wave function (in SI units) y(x, t) = 3...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The wave function for a traveling wave on a taut string is (in SI units) y(x,t)...

    The wave function for a traveling wave on a taut string is (in SI units) y(x,t) = 0.360 sin 14πt − 2πx + π 4 (a) What are the speed and direction of travel of the wave? speed m/s direction (b) What is the vertical position of an element of the string at t = 0, x = 0.200 m? m (c) What is the wavelength of the wave? m (d) What is the frequency of the wave? Hz (e)...

  • the wave function for a traveling wave on a taut string is (in si units) y(x,t)...

    the wave function for a traveling wave on a taut string is (in si units) y(x,t) = 0.360 sin (15pi -2pix + pi/4) Assignment #20 - PHYS 2213, Fal x + → C webassion.net/web/Student/Assignment-Responses/submit?dep=22560947&ta Jx 082 If you know the number of waves that come past every second (the frequency) and the length Need Help? 2. 2/6 points Previous Answers SerPSE 10 16.2.OP.007.MI. The wave function for a traveling wave on a taut string is (in SI units) x(xt) -...

  • (8110 The wave function for a traveling wave on a taut string is in SI units)...

    (8110 The wave function for a traveling wave on a taut string is in SI units) y(x,t) = 0.400 sin 8tt - 57x + 4) (a) What are the speed and direction of travel of the wave? speed 8/5 m/s direction positive x-direction (b) What is the vertical position of an element of the string at t = 0, x = 0.138 m? X Your response differs significantly from the correct answer. Rework your solution from the beginning and check...

  • A transverse wave on a string is described by the following wave function. Y = 0.095...

    A transverse wave on a string is described by the following wave function. Y = 0.095 sin (1x + 5nt) where x and y are in meters and t is in seconds. (a) Determine the transverse speed at t = 0.300 s for an element of the string located at x = 1.30 m m/s (b) Determine the transverse acceleration at t = 0.300 s for an element of the string located at x + 1.30 m. m/s2 (c) What...

  • SELF TESTI 1. A wave is described by the equation y = 4 sin(31-6x) (SI units)....

    SELF TESTI 1. A wave is described by the equation y = 4 sin(31-6x) (SI units). a) Is the wave traveling in the +x or -x direction? b) Determine the amplitude, angular frequency, wavenumber, frequency, period, and wavelength (don't forget units). 2. A wave moves along a string in the +x direction with a speed of 8.0 m/s, a frequency of 4.0 Hz, and amplitude of 0.050 m. a) Determine the wavelength. b) Determine the wavenumber. c) Determine the period....

  • The wave function for a standing wave on a string is described by y(x, t) =...

    The wave function for a standing wave on a string is described by y(x, t) = 0.023 sin(4x) cos (591), where y and x are in meters and t is in seconds. Determine the maximum displacement and maximum speed of a point on the string at the following positions. (a) x = 0.10 m Ymax = Vmax = m/s m (b) x = 0.25 m Vmax = Vmax = m m/s (c) x = 0.30 m Ymax = m Vmax...

  • Wave function You are observing a wave traveling along the x-axis. The first picture (y vs....

    Wave function You are observing a wave traveling along the x-axis. The first picture (y vs. x) shows a snapshot of the wave at t=0. The second picture dy vs. t) shows how the wave height varies in time from the perspective of an observer standing at fixed location x-0. From this information, determine if the wave is traveling to the left or right. Give a one-sentence explanation justifying your answer 2) 3) The wave function for a harmonic (i.e.,...

  • The wave function for a standing wave on a string is described by y(x, t) =...

    The wave function for a standing wave on a string is described by y(x, t) = 0.021 sin(4x) cos (56át), where y and x are in meters and t is in seconds. Determine the maximum displacement and maximum speed of a point on the string at the following positions. (a) x = 0.10 m Ymax = m Vmax = m/s (b) x = 0.25 m Ymax = Vmax = m m/s (c) x = 0.30 m Ymax = Vmax =...

  • The wave function for a standing wave on a string is described by y(x, t) =...

    The wave function for a standing wave on a string is described by y(x, t) = 0.016 sin(4πx) cos (57πt), where y and x are in meters and t is in seconds. Determine the maximum displacement and maximum speed of a point on the string at the following positions. (a) x = 0.10 m ymax =  m vmax =  m/s (b) x = 0.25 m ymax =  m vmax =  m/s (c) x = 0.30 m ymax =  m vmax =  m/s (d) x = 0.50...

  • Consider a monochromatic wave on a sting described by an equation Y(x,t) = cos (x -...

    Consider a monochromatic wave on a sting described by an equation Y(x,t) = cos (x - t). Assume everything is expressed in SI units. a) Which way the wave is moving, left or right? b) Suppose the same string is now fixed at two ends and has a length 1 m. 2.6 Find three lowest frequencies of standing wave resonances. c) Sketch the profile of the string corresponding to the second standing wave d) What should be the speed of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT