Question

Problem statement: A metal hoop with a mass of 2 kg and a radius of 0.5 m is released from rest on the incline. If the coeffi

0 0
Add a comment Improve this question Transcribed image text
Answer #1

a moment of. Inentia of hoop I = MRP a acceleration of black a= sino 1 + IA MR2 A IA = Moment of Inentia About IA = MR2 + MR?acceleration a.- about a g sino . g sina 1 + Ta MR2 Ias MR? | 20 21.675 m/s2) N = 3 (os 20 mg los 20 friction force = ls img30 oba .s= uttllat? 3 = 0 + _ x 1.675 Xt? Tt = 1.8926 sec/

Add a comment
Know the answer?
Add Answer to:
Problem statement: A metal hoop with a mass of 2 kg and a radius of 0.5...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Q4 (15 points): A uniform hoop of radius R - 15 cm and mass M 1.2...

    Q4 (15 points): A uniform hoop of radius R - 15 cm and mass M 1.2 kg is placed at the top of an incline of height h-2 m. The surface of the incline makes an angle θ-30° with the horizontal. The hoop is released from rest and rolls without slipping. m MR2 for hoopl a) What is the acceleration of its center of mass (açom) during rolling? b) What is the force of friction in unit vector notation required...

  • A hoop of radius 0.50 m and a mass of 0.020 kg is released from rest and allowed to roll down to the bottom of an inclined plane.

    A hoop of radius 0.50 m and a mass of 0.020 kg is released from rest and allowed to roll down to the bottom of an inclined plane. The hoop rolls down the incline dropping a vertical distance of 3.0 m. Assume that the hoop rolls without slipping. (a) Determine the total kinetic energy at the bottom of the incline. (b) How fast is the hoop moving at the bottom of the incline?

  • 00 = 8 rad/s The hoop (thin ring) has a mass of 5 kg and is...

    00 = 8 rad/s The hoop (thin ring) has a mass of 5 kg and is released down the inclined plane such that it has a backspinw=8 rad/s and its centre has a velocity VG = 3 m/s as shown. If the coefficient of kinetic friction between the hoop and the plane is Hoke=0.6. determine how long the hoop rolls before it stops slipping. Ug = 3 m/s 0.5 m 30°

  • A thin hoop of radius r = 0.82 m and mass M = 7.3 kg rolls...

    A thin hoop of radius r = 0.82 m and mass M = 7.3 kg rolls without slipping across a horizontal floor with a velocity v = 1.1 m/s. It then rolls up an incline with an angle of inclination theta = 44 degrees. a) What is the maximum height h reached by the hoop before rolling back down the incline? b) Now, suppose a uniform solid sphere is used instead of a hoop. Use the same values of r,...

  • 7090 2. A circular rigid body of mass m and radius of gyration k is released...

    7090 2. A circular rigid body of mass m and radius of gyration k is released from stationary in an incline plane of incline angle θ and coefficient of friction μ Determine the normal reaction force, friction force, linear and angular accelerations when it is in (1) pure rolling motion. (2) rolling with slipping motion. (3) Compare a cylinder (radius of gyration k 1/ 2) and a hoop (k- 1) of the same mass, which one travels faster along the...

  • 4. The figure below shows a hoop with mass m = 0.5 kg and radius a...

    4. The figure below shows a hoop with mass m = 0.5 kg and radius a at rest on a frictionless table. Right a disk with mass M = 2m and radius b spinning with angular velocity W = 5.0 rad/s, and it is dropped onto the hoop. Eventually, the hoop and the disk rotate together with angular velocity 0. a. What is w? Express it in terms of a and b. (12 pts) b. How much energy AE is...

  • A hoop of mass M = 2 kg and radius R = 0.4 m rolls without slipping down a hill, as shown in the figure.

    A hoop of mass M = 2 kg and radius R = 0.4 m rolls without slipping down a hill, as shown in the figure. The lack of slipping means that when the center of mass of the hoop has speed v, the tangential speed of the hoop relative to the center of mass is also equal to VCM, since in that case the instantaneous speed is zero for the part of the hoop that is in contact with the...

  • Multiple Choice (select the best answer) (2 pts each 1. Consider a uniform hoop of radius...

    Multiple Choice (select the best answer) (2 pts each 1. Consider a uniform hoop of radius R and mass M rolling without slipping. Which is larger, its translational kinetic energy or its rotational kinetic energy? A) Translational kinetic energy is larger B) Rotational kinetic energy is larger. C) Both are equal. D) You need to know the speed of the hoop to tell. 2. A disk and a hoop of the same mass and radius are released at the same...

  • Problem -2 A hollow ball of radius 0.5 m and mass 4.5 kg is rolling without...

    Problem -2 A hollow ball of radius 0.5 m and mass 4.5 kg is rolling without slipping on a level surface at a constant speed of 4.0 m/s. The ball rolls up a 40- ramp and eventually stops before rolling back down. (the moment of inertia of a hollow ball of mass M and radius RisMR2) Find: (a) the angular (rotational) speed of the ball (in rad/sec) just before it begins to move up the ramp: (b) the rotational kinetic...

  • Problem #2 A hollow ball of radius 0.5 m and mass 4.5 kg is rolling without...

    Problem #2 A hollow ball of radius 0.5 m and mass 4.5 kg is rolling without slipping on a level surface at a constant speed of 4.0 m/s. The ball rolls up a 40° ramp and eventually stops before rolling back down. (the moment of inertia of a hollow ball of mass M and radius R is MR2) Find: (a) the angular (rotational) speed of the ball (in rad/sec) just before it begins to move up the ramp; (b) the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT