Question

If light consisted of classical particles and was sent through a double slit, the pattern on...

If light consisted of classical particles and was sent through a double slit, the pattern on the wall would be which of the following?

a single bright fringe dependent on the size of the slit

an interference pattern of light and dark fringes    

a large round dot

a bright blob with no distinct shape


If light is actually a wave that only behaves like a particle in certain situations then, when light passes through a double slit, the pattern on the wall would be which of the following?

a single bright fringe dependent on the size of the slit

an interference pattern of light and dark fringes     

a large round dot

two lines proportional to the shape of the two slits

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
If light consisted of classical particles and was sent through a double slit, the pattern on...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • 1. You shine light of wavelength 500nm through a double slit with a slit separation of...

    1. You shine light of wavelength 500nm through a double slit with a slit separation of 100pm. You then shine the same light on a single slit with width a. You notice that the second dark fringe for both experiments are at the same location. (a) Find the width a of the single slit. (b) Suppose you are shining the light on a screen 1.5m from the slits. For both experiments, find the locations of the first three dark fringes...

  • Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits...

    Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits are separated by 7 mm, and the interference pattern is projected onto a screen 7 m away from the slits. The central bright fringe is at a certain spot on the screen. Using a ruler with one end placed at the central fringe, you move along the ruler passing by two more bright fringes and find that the next bright fringe is 21.5 mm...

  • A double slit aperture is illuminated by light of wavelength 530nm and the interference pattern is...

    A double slit aperture is illuminated by light of wavelength 530nm and the interference pattern is observed on a screen 5.00m away. The slits are 2.125fim width and are separated by 0.1mm. How far apart are the first and second bright fringes? How far apart are the first and second dark fringes? Determine the slit to screen distance required such that the width of the central peak of the diffraction pattern is 1 m. Why is the calculation from part...

  • 4) Consider orange light of wavelength 620 nm incident on a double slit. The interference pattern...

    4) Consider orange light of wavelength 620 nm incident on a double slit. The interference pattern is observed on a screen that is placed 2.50 m behind the slits. Nine bright fringes are seen, spanning a total distance of 45.0 mm. a) What is the fringe spacing between two adjacent fringes? (Be careful, you may want to sketch out a simple picture of the fringes to assist you with this problem!) b) What is the spacing between the two slits?

  • Suppose Young's double slit experiment is performed in air using red light and the interference pattern...

    Suppose Young's double slit experiment is performed in air using red light and the interference pattern is shown on a screen. You then submerge the entire setup into water. What happens to the interference pattern? It disappears. The bright fringes are farther apart. The bright and dark fringes stay in the same locations but the contrast is reduced. No change happens in the interference pattern. The bright fringes are closer together.

  • Consider double slit experiment with two slits are separated by d=0,715 mm

    Consider double slit experiment with two slits are separated by d=0.715 mm and each slit width is 0.00321 mm. Screen is placed L=1.28 m away from the slits. a) Derive an algebraic equation to find linear distance of interference bright fringe on the screen from central bright (central maxima) fringe?  b) Consider interference pattern due to light of unknown wavelength and linear separation between 2 and 5" bright fringes is 3.05 mm. Find the wavelength of the light? c) Now consider double slit...

  • Light of wavelength 519 nm passes through two slits. In the interference pattern on a screen...

    Light of wavelength 519 nm passes through two slits. In the interference pattern on a screen 4.6 m away, adjacent bright fringes are separated by 5.2 mm in the general vicinity of the center of the pattern. What is the separation of the two slits? Draw the slits • Draw the screen a distance L from the slits • Draw the paths from each slit • Mark the bright locations on the screen. Start with the double slit bright fringe...

  • Light of wavelength 519 nm passes through two slits. In the interference pattern on a screen...

    Light of wavelength 519 nm passes through two slits. In the interference pattern on a screen 4.6 m away, adjacent bright fringes are separated by 5.2 mm in the general vicinity of the center of the pattern. What is the separation of the two slits? Draw the slits • Draw the screen a distance L from the slits • Draw the paths from each slit • Mark the bright locations on the screen. Start with the double slit bright fringe...

  • In a double-slit interference experiment the slit separation is 8.40 x 10-6 m and the slits...

    In a double-slit interference experiment the slit separation is 8.40 x 10-6 m and the slits are 2.80 m from the screen. Each slit has a width of 1.20 x 10-6 m. a) An interference pattern is formed when light with a wavelength of 450 nm is shined on the slits. How far (in meters) from the center of the interference pattern on the screen do the third order (m = 3) bright fringes occur? (1.5 pts) b) If a...

  • A double slit interference pattern uses red light with lambda = 650 nm. The slits are...

    A double slit interference pattern uses red light with lambda = 650 nm. The slits are 1 mu m apart. What is the angle theta for the first order bright fringe?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT