Question

Suppose Youngs double slit experiment is performed in air using red light and the interference pattern is shown on a screen.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Wavelength of the wave decrease as it enters into the water. Because wavelength is inversely proportional to the refractive index. Since \mu of water is greater than air, hence wavelength will decrease and according to the relationship dsin\theta = n\lambda, changes will occur accordingly.

Add a comment
Know the answer?
Add Answer to:
Suppose Young's double slit experiment is performed in air using red light and the interference pattern...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Question 1 (1 point) Suppose Young's double slit experiment is performed in air using red light...

    Question 1 (1 point) Suppose Young's double slit experiment is performed in air using red light and the interference pattern is shown on a screen. You then submerge the entire setup into water. What happens to the interference pattern? It disappears. The bright fringes are closer together. No change happens in the interference pattern. The bright fringes are farther apart. The bright and dark fringes stay in the same locations but the contrast is reduced.

  • A double-slit interference experiment is performed with two very narrow slits separated by 0.19 mm. The...

    A double-slit interference experiment is performed with two very narrow slits separated by 0.19 mm. The experiment uses red light with a wavelength of 700 nm and projects the interference pattern onto a screen 5.0 m away from the slits. (a) What is the distance between two nearby bright fringes on the screen? (b) What is the distance between two nearby dark fringes on the screen? Assume these fringes are all near θ = 0. A Young's double-slit interference experiment...

  • A Young's double-slit interference experiment gives bright fringes separated by 6.6 cm on a screen when...

    A Young's double-slit interference experiment gives bright fringes separated by 6.6 cm on a screen when the experiment is performed in air. The entire apparatus is then placed under water (n = 1.33). What is the new spacingbten bright fringes? Assume the fringes are near the center of the interference pattern

  • You shine red light and blue light through the same setup in Young's double slit experiment....

    You shine red light and blue light through the same setup in Young's double slit experiment. Compared to the fringe pattern produced by the red light, the fringes due to the blue light will be... Closer together At the same positions Further apart Not enough information to tell

  • A double slit aperture is illuminated by light of wavelength 530nm and the interference pattern is...

    A double slit aperture is illuminated by light of wavelength 530nm and the interference pattern is observed on a screen 5.00m away. The slits are 2.125fim width and are separated by 0.1mm. How far apart are the first and second bright fringes? How far apart are the first and second dark fringes? Determine the slit to screen distance required such that the width of the central peak of the diffraction pattern is 1 m. Why is the calculation from part...

  • A double-slit interference experiment is performed with two very narrow slits separated by 0.10 mm. The...

    A double-slit interference experiment is performed with two very narrow slits separated by 0.10 mm. The experiment uses red light with a wavelength of 680 nm and projects the interference pattern onto a screen 6.0 m away from the slits (a) What Is the dlstance between two nearby brlght fringes on the screen? (b) What is the distance between two nearby dark fringes on the screen? Assume these fringes are all near0

  • shows the fringes observed in a double-slit interference experiment when the two slits are illuminated by...

    shows the fringes observed in a double-slit interference experiment when the two slits are illuminated by white light. The central maximum is white because all of the colors overlap. This is not true for the other fringes. The m = 1 fringe clearly shows bands of color, with red appearing farther from the center of the pattern, and blue closer. If the slits that create this pattern are 25 μm apart and are located 0.95 m from the screen, what...

  • 1) In a double slit experiment, what happens to the fringe pattern when the slit separation...

    1) In a double slit experiment, what happens to the fringe pattern when the slit separation (d) is decreased and the screen is moved away from the slit ( L is increased)? a) fringes get further apart b) fringes get closer together c) cannot be determined without knowing the values of d and L 2) White light is being analyzed by a diffraction grating (100 lines/mm). In the interference pattern, the third order blue (wavelength=400 nm) appears 10 cm from...

  • In a double-slit interference experiment the slit separation is 8.40 x 10-6 m and the slits...

    In a double-slit interference experiment the slit separation is 8.40 x 10-6 m and the slits are 2.80 m from the screen. Each slit has a width of 1.20 x 10-6 m. a) An interference pattern is formed when light with a wavelength of 450 nm is shined on the slits. How far (in meters) from the center of the interference pattern on the screen do the third order (m = 3) bright fringes occur? (1.5 pts) b) If a...

  • 1( A) In a Young's double-slit experiment, a set of parallel slits with a separation of...

    1( A) In a Young's double-slit experiment, a set of parallel slits with a separation of 0.102 mm is illuminated by light having a wavelength of 576 nm and the interference pattern observed on a screen 3.50 m from the slits. What is the difference in path lengths from the two slits to the location of a third order bright fringe on the screen? 1(B) In a Young's double-slit experiment, a set of parallel slits with a separation of 0.102...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT