Question

In the figure, a 8.28 g bullet ls fired into a 0.998 kg block attached to the end of a 0.6 11 m nonuniform rod of mass 0.490 kg. The block-rod-bullet system then notates in the plane of the figure, about a fixed axis at A. The rotational Inertla of the nod alone about A s 0.0857 kg.m2. eat the block as a partlcle. (a) What then Is the rotational Inertia of the block-rod-bullet system about polnt A b) If he angular speed of the system about A just after Impact Is 4.66 rads, what is the bullets speed just before impact? Block Bullet (a) Number Units (b) Number Units

0 0
Add a comment Improve this question Transcribed image text
Answer #1

The total moment of inertia is
I = I(rod) + I(block) + I(bullet)

Since the block and bullet are treated as "point" masses a distance r=.611 m from "A" then;
I = (.0857) + Mr^2 + mr^2
= (.0857) + (.49)(.611)^2 + (.00828)(.611)^2
= .272 Kg-m^2

Conservation of angular momentum.
The bullets angular momentum = py = mvy = (just before impact)= mvr
The system angular momentum after impact is Iw
mvr = Iw
v = Iw/mr
= (.272)(4.66)/(.00828)(.611)
= 250.54m/s

Add a comment
Know the answer?
Add Answer to:
In the figure, a 8.28 g bullet is fired into a 0.996 kg block attached to...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • MESSAGE MY INSTRUCTOR FULL SCREEN PRINTER VERSION BACK Chapter 11, Problem 060 t is fired into...

    MESSAGE MY INSTRUCTOR FULL SCREEN PRINTER VERSION BACK Chapter 11, Problem 060 t is fired into a 0.129 kg block attached to the end of a 0.242 m nonuniform rod of mass 0.728 kg. The block-rod-bulet system then rotates in the plane of the figure, about a fixed axis at A. The rotational inertia of the rod alone about A is 0.0 block-rod-bullet system about point A? (b) If the angular speed of the system about A just after impact...

  • Q17 (15 points): As shown in the figure, a 5.00 g bullet is fired into a...

    Q17 (15 points): As shown in the figure, a 5.00 g bullet is fired into a 920 g block attached to the end of a 75.0 cm uniform rod of mass 350 g. The block-rod-bullet) system then rotates in the horizontal plane of the figure, about a fixed axis at A. Treat the block as a point particle. a) Calculate the rotational inertia of the (block-rod-bullet; system about point A b) If the angular speed of the system about point...

  • Q21 (15 points): A uniform rod of mass m 1.5 kg and length d- 2.0 m...

    Q21 (15 points): A uniform rod of mass m 1.5 kg and length d- 2.0 m is supported by a pivot point P at its top and is free to rotate iın the vertical plane. A block of mass m2 0.8 kg is attached to the other end of the rod. The rod-block system is initially at rest, and a 1g bullet is fired horizontally into the rod through a point x 08 d below the pivot P Assume that...

  • A bullet of mass 2.0×10−3 kg embeds itself in a wooden block with mass 0.996 kg...

    A bullet of mass 2.0×10−3 kg embeds itself in a wooden block with mass 0.996 kg , which then compresses a spring (k = 120 N/m ) by a distance 4.5×10−2 m before coming to rest. The coefficient of kinetic friction between the block and table is 0.49. A) What is the initial speed of the bullet? B) What fraction of the bullet's initial kinetic energy is dissipated (in damage to the wooden block, rising temperature, etc.) in the collision...

  • A 10.0-g bullet is fired into, and embeds itself in, a 1.95-kg block attached to a...

    A 10.0-g bullet is fired into, and embeds itself in, a 1.95-kg block attached to a spring with a force constant of 20.0 N/m and whose mass is negligible. How far is the spring compressed if the bullet has a speed of 300 m/s just before it strikes the block and the block slides on a frictionless surface? Note: You must use conservation of momentum in this problem because of the inelastic collision between the bullet and block.

  • A 10.0-g bullet is fired into, and embeds itself in, a 1.80-kg block attached to a...

    A 10.0-g bullet is fired into, and embeds itself in, a 1.80-kg block attached to a spring with a force constant of 22.3 N/m and whose mass is negligible. How far is the spring compressed if the bullet has a speed of 300 m/s just before it strikes the block and the block slides on a frictionless surface? Note: You must use conservation of momentum in this problem because of the inelastic collision between the bullet and block.

  • 1. A 0.012 kg bullet is fired horizontally into a 0.1 kg wooden block that is...

    1. A 0.012 kg bullet is fired horizontally into a 0.1 kg wooden block that is initially at rest on a frictionless horizontal surface and connected to a spring having spring constant k= 150 N/m. The bullet becomes embedded in the block. If the bullet-block system compresses the spring by a maximum of 0.8 meter and comes to complete stop, what was the speed of the bullet at impact with the block? -www-

  • 2) A 10.0-g bullet is fired into, and embeds itself in, a 1.80-kg block attached to...

    2) A 10.0-g bullet is fired into, and embeds itself in, a 1.80-kg block attached to a spring with a force constant of 22.4 N/m and whose mass is negligible. How far is the spring compressed if the bullet has a speed of 300 m/s just before it strikes the block and the block slides on a frictionless surface? Note: You must use conservation of momentum in this problem because of the inelastic collision between the bullet and block. ___...

  • In Figure (1), a 3.50 g bullet is fired horizontally at two blocks at rest on...

    In Figure (1), a 3.50 g bullet is fired horizontally at two blocks at rest on a frictionless table. The bullet passes through block 1 (mass 1.37 kg) and embeds itself in block 2 (mass 2.01 kg). The blocks end up with speeds v_1 = 0.600 m/s and v_2 = 1.45 m/s (see Figure (2)). Neglecting the material removed from block 1 by the bullet, find the speed of the bullet as it (a) leaves and (b) enters block 1....

  • In Figure (1), a 3.50 g bullet is fired horizontally at two blocks at rest on...

    In Figure (1), a 3.50 g bullet is fired horizontally at two blocks at rest on a frictionless table. The bullet passes through block 1 (mass 1.33 kg) and embeds itself in block 2 (mass 1.89 kg). The blocks end up with speeds V1 = 0.560 m/s and v2 = 1.42 m/s (see Figure (2)). Neglecting the material removed from block 1 by the bullet, find the speed of the bullet as it (a) leaves and (b) enters block 1....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT