Question

2. (20%) Air at the 25 °C with a mass flow rate of m- 0.01 kg/sec enters a rectangular duct 0 6 em cross section and 2 m long. The duct wall is subjected to a uniform heat flux of qKw temperature of the air and the duct surface temperature at the duct outlet (A hydrod1.568 x 103 mls,Pr developed flow). Air properties to be used are:ρ-1.1774 kgm, C,-1.0057 0.708, k -0.02624 w/m-oC. 5 kw/m2. Determine the oulet ically and thermally kJ/kg-C, v-1
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
2. (20%) Air at the 25 °C with a mass flow rate of m- 0.01 kg/sec...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Air at 3x104 kg/s and 27°C enters a rectangular duct that is 1 m long and...

    Air at 3x104 kg/s and 27°C enters a rectangular duct that is 1 m long and 4 mm by 16 mm on a side. A uniform heat flux of 600 W/m2 is imposed on the duct surface. What is the temperature of the air and of the duct surface at the outlet?

  • Air at a temperature Tm, i = 20°C and p = 1 atm enters a 25-mm...

    Air at a temperature Tm, i = 20°C and p = 1 atm enters a 25-mm diameter, 1.75 m tube with a mass flow rate of 6 x 10-4 kg/s. A constant heat flux warms the air so that its exit mean temperature is Tm, 0 = 50°C. Find the required heat flux and wall surface temperature at the outlet. Assume fully developed flow. Step 1 What is the heat rate transfer to the air from the tube, in W?...

  • 2) (35 pt) Atmospheric air at 25 Centers a duct having a cross section of an...

    2) (35 pt) Atmospheric air at 25 Centers a duct having a cross section of an equilateral triangle 2 cm on a side with a velocity of 1.5 m/s. The length of the duct is 10 m. A constant heat flux is imposed on the duct wall. The mean temperature of the air at the duct exit is 75 °C. a. Is the flow at the duct exit hydrodynamically and thermally fully developed? Show. T-75 °C b. Calculate the convection...

  • 3. Air enters a constant area duct at a Mach number of 0.14, a pressure of 195 kPa, and a temperature of 25 °C. Heat is added to the air that flows through the duct at a rate of 65 kJ/kg of air. A...

    3. Air enters a constant area duct at a Mach number of 0.14, a pressure of 195 kPa, and a temperature of 25 °C. Heat is added to the air that flows through the duct at a rate of 65 kJ/kg of air. Assuming that the flow is steady and that the effects of wall friction can be ignored, find the temperature, pressure, and Mach number at which the air leaves the duct. Assume that the air behaves as a...

  • I. Air at 300 C and 40o kfa enters a round duct with mass flow rate...

    I. Air at 300 C and 40o kfa enters a round duct with mass flow rate of 2.22 kg kec a a) Deternine the duct diameter, in meters, required for an air velacity of 50 Mkec b) If the air exits at 240 c and 380 kfa through a duct iameter of 20 cm, determine the exit velocity, in m/sec? M with a

  • Water enters a 20-mm tube at 27°C with a flow rate of 450 kg/h. The rate...

    Water enters a 20-mm tube at 27°C with a flow rate of 450 kg/h. The rate of heat transfer from the tube wall to the fluid is given as q5'(W/m) - a x, where the coefficient a is 20 W/m2 and x (m) is the axial distance from the tube entrance. (a) Beginning with a properly defined differential control volume in the tube, derive an expression for the temperature distribution T m(x) of the water. Use this expression to determine...

  • 8.12 Dry, compressed air at Tm.i75°C, p-10 atm, with a mass flow rate of 0.001 kg/s,...

    8.12 Dry, compressed air at Tm.i75°C, p-10 atm, with a mass flow rate of 0.001 kg/s, enters a 30-mm-diameter, 5-m-long tube whose surface is at Ts - 25°C. (a) Determine the thermal entry length, the mean temperature of the air at the tube outlet, the rate of heat transfer from the air to the tube wall, and the power required to flow the air through the tube. For these conditions the fully developed heat transfer coefficient is h- 3.58 W/m2...

  • 2.Air enters an adiabatic nozzle in steady flow at 300 kPa, 200 C and 45 m/sec,...

    2.Air enters an adiabatic nozzle in steady flow at 300 kPa, 200 C and 45 m/sec, and leaves at 100 kPa and 180 m/sec. The inlet area of the nozzle is 110 cm 2. Determine: (a) the mass flow rate through the nozzle, and mdot = _ kg/sec (b) the exit temperature T2 = OC

  • View Policies Current Attempt in Progress - 125 Air at a temperature Tmi -20°C and p...

    View Policies Current Attempt in Progress - 125 Air at a temperature Tmi -20°C and p - 1 atm enters a 25-mm diameter, 1.25 m tube with a mass flow rate of 6 x 10"W.A constant heat flux warms the air so that its exit mean temperature is Tm.o -50°C. Find the required heat flux and wall surface temperature at the outlet. Assume fully developed flow.

  • At steady state, air at 200 kPa, 325 K, and mass flow rate of 1.0 kg/s...

    At steady state, air at 200 kPa, 325 K, and mass flow rate of 1.0 kg/s enters an insulated duct having differing inlet and exit cross-sectional areas. The inlet cross-sectional area is 6 cm2. At the duct exit, the pressure of the air is 100 kPa and the velocity is 300 m/s. Neglecting potential energy effects and modeling air as an ideal gas, determine a. the velocity of the air at the inlet, in m/s. b. the temperature of the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT