Question

A textbook of mass 1.92 kg rests on a frictionless, horizontal surface. A cord attached to...

A textbook of mass 1.92 kg rests on a frictionless, horizontal surface. A cord attached to the book passes over a pulley whose diameter is 0.150 m , to a hanging book with mass 2.94 kg . The system is released from rest, and the books are observed to move a distance 1.29 m over a time interval of 0.780 s

Part A

What is the tension in the part of the cord attached to the textbook?

Part B

What is the tension in the part of the cord attached to the book?

Take the free fall acceleration to be g = 9.80 m/s2 .

Part C

What is the moment of inertia of the pulley about its rotation axis?

Take the free fall acceleration to be g = 9.80 m/s2 .

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A textbook of mass 1.92 kg rests on a frictionless, horizontal surface. A cord attached to...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A textbook of mass 2.09kg rests on a frictionless, horizontal surface. A cord attached to the book passes over a pulley...

    A textbook of mass 2.09kg rests on a frictionless, horizontal surface. A cord attached to the book passes over a pulley whose diameter is 0.120m , to a hanging book with mass 2.99kg . The system is released from rest, and the books are observed to move a distance 1.30m over a time interval of 0.750s . Part A What is the tension in the part of the cord attached to the textbook? =9.66N Part B What is the tension...

  • 3. A 5.00 kg block rests on a level frictionless surface and is attached by a...

    3. A 5.00 kg block rests on a level frictionless surface and is attached by a light string to an 7.00 kg hanging mass where the string passes over a massless, frictionless pulley. Ifg=9.80 m/s, what is the tension in the connecting string? 4. A light string connects a 16 kg mass and a 4.0 kg mass over a massless, frictionless pulley. (a) If g= 9.8 m/s, what is the acceleration of the system when released? (b) What is the...

  • An object with mass m1 = 4.70 kg, rests on a frictionless horizontal table and is...

    An object with mass m1 = 4.70 kg, rests on a frictionless horizontal table and is connected to a cable that passes over a pulley and is then fastened to a hanging object with mass m2 = 11.7 kg, shown in the figure. as (a) Find the magnitude of the acceleration of each object m/s2 a1= m/s2 a2 (b) Find the tension in the cable N

  • An object with mass m1 = 4.70 kg, rests on a frictionless horizontal table and is...

    An object with mass m1 = 4.70 kg, rests on a frictionless horizontal table and is connected to a cable that passes over a pulley and is then fastened to a hanging object with mass m2 = 12.0 kg, as shown in the figure. (a) Find the magnitude of the acceleration of each object. a1 = 12 m/s2 a2 = m/s2 (b) Find the tension in the cable.

  • Block A has a mass of 20 kg and rests on a frictionless table. A cord...

    Block A has a mass of 20 kg and rests on a frictionless table. A cord attached to block A extends horizontally to a pulley at the edge of the table, block B has a 10 kg mass and hangs over the edge attached to the string. How would I calculate the tension in the cord?

  • A light rope is attached to a block with mass 3.00 kg that rests on a...

    A light rope is attached to a block with mass 3.00 kg that rests on a frictionless, horizontal surface. The horizontal rope passes over a frictionless, massless pulley, and a block with mass m is suspended from the other end. When the blocks are released, the tension in the rope is 15.3 N . part a) Draw free-body diagram for the 3.00-kg block. Assume block is moving to the right. Draw the vectors starting at a black dot. The location...

  • A block of mass m2 = 38 kg on a horizontal surface is connected to a...

    A block of mass m2 = 38 kg on a horizontal surface is connected to a mass m2 = 20.1 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m, and the horizontal surface is 0.24. m (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? 3.39 Did you draw a free-body...

  • A bucket of water of mass 15.7 kg is suspended by a rope wrapped around a...

    A bucket of water of mass 15.7 kg is suspended by a rope wrapped around a windlass, that is a solid cylinder with diameter 0.280 m with mass 11.4 kg . The cylinder pivots on a frictionless axle through its center. The bucket is released from rest at the top of a well and falls a distance 10.6 m to the water. You can ignore the weight of the rope. Part A What is the tension in the rope while...

  • A block of mass m1 = 36 kg on a horizontal surface is connected to a...

    A block of mass m1 = 36 kg on a horizontal surface is connected to a mass m2 = 17.1 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.25. (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? ____ m/s2 (b) Determine the magnitude of...

  • show work and round 0.0001 Question 9 (1 point) A mass m1=1.5 kg rests on a...

    show work and round 0.0001 Question 9 (1 point) A mass m1=1.5 kg rests on a 30 degree ramp with a coefficient of kinetic friction 0.40. Mass m1 is tied to another mass m with a string which runs over a frictionless pulley. Mass m is hanging above the ground. The acceleration of masses is measured 2.94 m/s2. What is m? Your Answer: units Answer Question 11 (1 point) Two masses, one is m1-2.0 kg and another one m2 =...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT