Question

A regenerative Rankin cycle utilized the schematic of the figure below.

1. A regenerative Rankine cycle utilized the schematic of the figure below. . Conditions: T1-450oC, P1-3 MPa, T2-2500C, P,-0.

0 1
Add a comment Improve this question Transcribed image text
Answer #1

re CE WH You-ma m3 17. OF WH Z Ym-na-na m, - na - M3 no Condensonal Pressure for streams at different points 7 is = P4 = 0.01 MPa at 5 at 6 > 16 = P2 = 0.1 MPa at 8 → P = P = 3 Mia. = 3 MeaON 8. We = 3.78 kJ / kg ho = hy + Weg - 8 = 417 5 + 3.78 § 42128 kJ/kgApply closed energy balance in the water heater we get ma Cha - hiol = m (hy-hol - hg - ha ₂-hie - - 592 – 421-28 2964.5 - 60hol = hst Wed - 10 / 08 | ا 3 - 0 = 30 يو-ق kJ / kg d At T = 450°C and P = 3 Mia 3 - 44 33 = ط ا kJ / kg | 7008 = - وا ت A =- hy = 2818.62 kJ / kg Efficiency of turbine I, hi - he = 3344-35-2964.3 334 4.35 - 2818.62 = 0 -7225 = 72-25 % I Ans)

Add a comment
Know the answer?
Add Answer to:
A regenerative Rankin cycle utilized the schematic of the figure below. 1. A regenerative Rankine cycle...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider an ideal regenerative Rankine water vapor cycle with two feed water heaters, one closed (streams...

    Consider an ideal regenerative Rankine water vapor cycle with two feed water heaters, one closed (streams do not physically mix). The steam enters the turbine at 10MPa and 600º C, at a rate of 310kh / s, and exits towards the condenser at 10kPa. Steam is drawn from the turbine at 1.2 MPa (stream 9) for the closed heater and at 0.6 MPa (stream 10) for the open heater. The extracted steam leaves the closed heater (stream 6) as a...

  • 3. A water vapor thermoelectric plant operates in the regenerative Rankine cycle with two open feed...

    3. A water vapor thermoelectric plant operates in the regenerative Rankine cycle with two open feed water heaters as shown in the figure. The plant maintains the turbine inlet at 10 MPa and 600 ° C, and operates the condenser at 5 kPa. Steam is drawn from the turbine at 0.6 and 0.2 MPa. The water comes out of both feed water heaters as a saturated liquid. The isentropic efficiency for the turbine and the pumps is 90%. For a...

  • Tutorial Questions 1 1. Water is the working fluid in an ideal Rankine cycle. The condenser...

    Tutorial Questions 1.1. Water is the working fluid in an ideal Rankine cycle. The condenser pressure is kPa, and saturated vapor enters the turbine at 10 MPa. Determine the heat transfer rates, in kJ per kg of steam flowing, for the working fluid passing through the boiler and condenser and calculate the thermal efficiency.2. Water is the working fluid in an ideal Rankine cycle. Saturated vapor enters the turbine at 16 MPa, and the condenser pressure is 8 kPa ....

  • Consider a steam power plant that operates on the ideal regenerative Rankine cycle with a closed...

    Consider a steam power plant that operates on the ideal regenerative Rankine cycle with a closed feedwater heater as shown in the figure. The plant maintains the turbine inlet at 3000 kPa and 3508C; and operates the condenser at 20 kPa. Steam is extracted at 1000 kPa to serve the closed feedwater heater, which discharges into the condenser after being throttled to condenser pressure. Calculate the work produced by the turbine, the work consumed by the pump, and the heat...

  • 2) A steam power plant operates on an ideal regenerative rankine cycle with superheated steam leaving...

    2) A steam power plant operates on an ideal regenerative rankine cycle with superheated steam leaving the boiler, entering the turbine at 10 mPa,600C. X fraction of steam is extracted from the turbine at 0.6 mPa pressure for the high pressure open feedwater heater. Then x fraction more of steam is extracted from the turbine at 0.2 mPa pressure for the low pressure open feedwater heater . The condenser pressure in the cycle is 5 kPa. The mass flow rate...

  • Consider a steam power plant that operates on an ideal regenerative rankine cycle

    Consider a steam power plant that operates on an ideal regenerative rankine cycle. Steam enters turbine at 6 MPa and 450 deg and is condensed in the condenser at 20 kPa. Bleed Steam is extracted from the turbine at 0.4 MPa to heat the boiler feed-water in an open feed-water heater, water leaves the feed water heater as a saturated liquid. Construct a property table giving the pressure, enthalpy and phase for all the state points identified in the cycle...

  • Water is the working fluid in an ideal regenerative Rankine cycle with one open feed water heater, Figure 2. Upstream of the high pressure turbine superheated vapour with a mass flow rate of 90 kg/s...

    Water is the working fluid in an ideal regenerative Rankine cycle with one open feed water heater, Figure 2. Upstream of the high pressure turbine superheated vapour with a mass flow rate of 90 kg/s entres the first-stage turbine at a pressure of 14 MPa Each turbine stage has an isentropic efficiency of 90%. The temperature of the inlet vapour is 520°C. The steam expands through the first-stage turbine to a pressure of 0.9MPa where some of the steam is...

  • 10-48 Consider a steam power plant that operates on the ideal regenerative Rankine cycle with a...

    10-48 Consider a steam power plant that operates on the ideal regenerative Rankine cycle with a closed feedwater heater as shown in the figure. The plant maintains the turbine inlet at 3000 kPa and 350°C; and operates the condenser at 20 kPa. Steam is extracted at 1000 kPa to serve the closed feedwater heater, which discharges into the condenser after being throttled to condenser pressure. Calculate the work pro- duced by the turbine, the work consumed by the pump, and...

  • Water is the working fluid in an ideal regenerative Rankine cycle with one closed feedwater heater....

    Water is the working fluid in an ideal regenerative Rankine cycle with one closed feedwater heater. Superheated vapor enters the turbine at 12 MPa, 480°C, and the condenser pressure is 6 kPa. Steam expands through the first-stage turbine where some is extracted and diverted to a closed feedwater heater at 0.7 MPa. Condensate drains from the feedwater heater as saturated liquid at 0.7 MPa and is trapped into the condenser. The feedwater leaves the heater at 10 MPa and a...

  • 10-55 Consider a steam power plant that operates on the ideal regenerative Rankine cycle with a...

    10-55 Consider a steam power plant that operates on the ideal regenerative Rankine cycle with a closed feedwater heater as shown in the figure. The plant maintains the turbine inlet at 3000 kPa and 350°C and operates the condenser at 20 kPa. Steam is extracted at 1000 kPa to serve the closed feedwater heater, which discharges into the condenser after being throt- tled to condenser pressure. Calculate the work produced by the turbine, the work consumed by the pump, and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT