Question

The normalized wave function for a hydrogen atom in the 1s state is given by ψ(r)...

The normalized wave function for a hydrogen atom in the 1s state is given by ψ(r) =( 1 /(\sqrt{\pi a_{0}}) )e^{-r/a_{0}} \) where α0 is the Bohr radius, which is equal to 5.29 × 10-11 m. What is the probability of finding the electron at a distance greater than 7.8 α0 from the proton?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
The normalized wave function for a hydrogen atom in the 1s state is given by ψ(r)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The normalized wave function for a hydrogen atom in the 1s state is given by ψ(r)...

    The normalized wave function for a hydrogen atom in the 1s state is given by ψ(r) =  where α0 is the Bohr radius, which is equal to 5.29 × 10-11 m. What is the probability of finding the electron at a distance greater than 7.8 α0 from the proton? Anwer is 2.3 × 10-5, but how can I get it? ας παο

  • The normalized wave function for a hydrogen atom in the 2s state is

    ( 25 marks) The normalized wave function for a hydrogen atom in the \(2 s\) state is$$ \psi_{2 s}(r)=\frac{1}{\sqrt{32 \pi a^{3}}}\left(2-\frac{r}{a}\right) e^{-r / 2 a} $$where \(a\) is the Bohr radius. (a) In the Bohr model, the distance between the electron and the nucleus in the \(n=2\) state is exactly \(4 a\). Calculate the probability that an electron in the \(2 s\) state will be found at a distance less than \(4 a\) from the nucleus. (b) At what value...

  • Consider an electron within the ls orbital of a hydrogen atom. The normalized probability of finding...

    Consider an electron within the ls orbital of a hydrogen atom. The normalized probability of finding the electron within a sphere of a radius R centered at the nucleus is given by normalized probability = [az-e * (až + 2a, R+ 2R)] where a, is the Bohr radius. For a hydrogen atom, ao = 0.529 Å. What is the probability of finding an electron within one Bohr radius of the nucleus? normalized probability: 0.323 Why is the probability of finding...

  • The ground-state wave function of a hydrogen atom is: where r is the distance from the...

    The ground-state wave function of a hydrogen atom is: where r is the distance from the nucleus and a0 is the Bohr radius (53 pm). Following the Born approximation, calculate the probability, i.e., |ψ|^2dr, that the electron will be found somewhere within a small sphere of radius, r0, 1.0 pm centred on the nucleus. ρν/α, Ψ1, () =- Μπαρ

  • The wave function for a hydrogen atom in the ground state is given by

    ( 25 marks) The wave function for a hydrogen atom in the ground state is given by \(\psi(r)=A e^{-r / a_{s}}\), where \(A\) is a constant and \(a_{B}\) is the Bohr radius. (a) Find the constant \(A\). (b) Determine the expectation value of the potential energy for the ground state of hydrogen.

  • An electron in a hydrogen atom is in the n -3, 2, m-2 state. For this state, the normalized radia...

    An electron in a hydrogen atom is in the n -3, 2, m-2 state. For this state, the normalized radial wave function and normalized spherical harmonics are Rs2(r)42 sin2 θ e_2іф . (a) Calculate the probability of finding the electron within 30 of the zy-plane, irre- spective of the distance r from the nucleus. irrespective of direction between r 3ao and r-9a0. (b) Calculate the probability of finding the electron between r (c) Calculate the probability of finding the electron...

  • The wave function for a hydrogen atom in the 2s state is psi_2s® = 1/squareroot 32...

    The wave function for a hydrogen atom in the 2s state is psi_2s® = 1/squareroot 32 pi a^3 (2-r/a) e^-r/2a. In the Bohr model, the distance between the electron and the nucleus in the n=2 state is exactly  Calculate the probability that an electron in the 2s state will be found at a distance less than 4a from the nucleus. P=

  • (1) The ground-state wave function for the electron in a hydrogen is given by ls 0...

    (1) The ground-state wave function for the electron in a hydrogen is given by ls 0 Where r is the radial coordinate of the electron and a0 is the Bohr radius (a) Show that the wave function as given is normalized (b) Find the probability of locating the electron between rF a0/2 and r2-3ao/2. Note that the following integral may be useful n! 0 dr =-e re /a roa r a Ta

  • Problem 10 (Problem 2.24 in textbook) The wavefunction for the electron in a hydrogen atom in its...

    Problem 10 (Problem 2.24 in textbook) The wavefunction for the electron in a hydrogen atom in its ground state (the 1s state for which n 0, l-0, and m-0) is spherically symmetric as shown in Fig. 2.14. For this state the wavefunction is real and is given by exp-r/ao h2Eo 5.29 x 10-11 m. This quantity is the radius of the first Bohr orbit for hydrogen (see next chapter). Because of the spherical symmetry of ịpo, dV in Eq. (2.56)...

  • [12%] The ground state wave function for hydrogen atom is (a) N exp(-r/u2) (c) Nr2 exp(-r2/a...

    [12%] The ground state wave function for hydrogen atom is (a) N exp(-r/u2) (c) Nr2 exp(-r2/a ) (d) Nexp㈠,21%) (e) N exp(-rlao), where N is the normalized factor and ao is the Bohr radius.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT