Question

A proton is accelerated through a 3.11 kV potential difference and directed between parallel plates separated 12.3 mm as show

0 0
Add a comment Improve this question Transcribed image text
Answer #1

V = JOV mp = 1.6 73 x 1527 kg Up = 1,6x15198 AV = 3.11810 v It d = 1,23x10²m fooma kinetic Energy & acclerating potential Imp

Add a comment
Know the answer?
Add Answer to:
A proton is accelerated through a 3.11 kV potential difference and directed between parallel plates separated...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An electron is accelerated through a potential difference of 2.2 kV and directed into a region...

    An electron is accelerated through a potential difference of 2.2 kV and directed into a region between two parallel plates separated by 20 mm with a potential difference of120 V between them. The electron is moving perpendicular to the electric field when it enters the region between the plates. What magnetic field is necessary perpendicular to both the electron path and the electric field so that the electron travels in a straight line? T

  • In the figure, an electron accelerated from rest through potential difference V_1 = 1.02 kV enters...

    In the figure, an electron accelerated from rest through potential difference V_1 = 1.02 kV enters the gap between two parallel plates having separation d = 26.5 mm and potential difference V_2= 171 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap?

  • In the figure, an electron accelerated from rest through potential difference V_1 = 1.3 kV enters...

    In the figure, an electron accelerated from rest through potential difference V_1 = 1.3 kV enters the gap between two parallel plates having separation 20.0 mm and potential difference V_2 = 200 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap? (Express...

  • WITCUTELL. In the figure, an electron accelerated from rest through potential difference V1=1.16 kV enters the...

    WITCUTELL. In the figure, an electron accelerated from rest through potential difference V1=1.16 kV enters the gap between two parallel plates having separation d = 27.2 mm and potential difference V = 51.3 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap?...

  • Question 2 In the figure, an electron accelerated from rest through potential difference Vi-1.00 kv enters...

    Question 2 In the figure, an electron accelerated from rest through potential difference Vi-1.00 kv enters the gap between two parallel plates having separation d 21.2 mm and potential difference V2 158 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap? L....

  • A 140-V battery is connected across two parallel metal plates of area 28.5 cm2 and separation...

    A 140-V battery is connected across two parallel metal plates of area 28.5 cm2 and separation 8.40 mm . A beam of alpha particles (charge +2e, mass 6.64×10−27kg) is accelerated from rest through a potential difference of 1.60 kV and enters the region between the plates perpendicular to the electric field. a. What magnitude of magnetic field is needed so that the alpha particles emerge undeflected from between the plates? b. What direction of magnetic field is needed so that...

  • A 150 V battery is connected across two parallel metal plates of area 28.5cm2 and separation 8.20 mm. A beam of alpha particles (charge +2e, mass 6.64 x 10-27 kg). Acelerated from the rest through a potential difference of 1.75 kV and enters the region be

    A 150 V battery is connected across two parallel metal plates of area 28.5cm2 and separation 8.20 mm. A beam of alpha particles (charge +2e, mass 6.64 x 10-27 kg). Acelerated from the rest through a potential difference of 1.75 kV and enters the region between the plates perpendicular to the electric field. What magnitude and direction of magnetic field are needed so that the alpha particles emerge undeflected from between the plates?

  • A 120 V battery is connected across two parallel metal plates of area 28.5 cm" and...

    A 120 V battery is connected across two parallel metal plates of area 28.5 cm" and separation 7.20 mm. A beam of alpha particles (charge +2e, mass 6.64 x 10-27 kg) is accelerated from rest through a potential difference of 1.50 kV and enters the region between the plates perpendicular to the electric field, as shown in (Figure 1). V V Part A What magnitude of magnetic field is needed so that the alpha particles emerge undeflected from between the...

  • A proton (m= 1.67e-27 kg) is accelerated from rest through a potential difference of 11.5 kV...

    A proton (m= 1.67e-27 kg) is accelerated from rest through a potential difference of 11.5 kV before entering a velocity selector. If the B- field of the velocity selector is perpendicular to the velocity and the electric field (E) has a magnitude of 3.5e6 N/C, what is the required magnitude of the magnetic field (B) if the proton is undeflected?

  • Chapter 28, Problem 009 In the figure, an electron accelerated from rest through potential difference V,...

    Chapter 28, Problem 009 In the figure, an electron accelerated from rest through potential difference V, -0.889 KV enters the gap between two parallel plates having separation d - 16.1 mm and potential difference Vy- 59.7 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT