Question

A stationary car on a train track, m1 = 1500 kg, is struck by a train,...

A stationary car on a train track, m1 = 1500 kg, is struck by a train, m2 = 4500 kg. After the collision, the train and the car move together with a velocity of +2.3 m/s. Assume no external forces act during the collision.

a) What type of collision is this, and what physical quantity is conserved?

b) Calculate the initial velocity of the train in km/h.

c) Calculate the change in kinetic energy of the system.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

a) This is an inelastic collision and momentum is conserved in such collisions.

b) Let u be the initial velocity of the train.

Then,

4500*u = (1500+4500)*2.3

=> u = 3.07 m/s

c) Hence, the initial KE of the system is (1/2)m2u^2 + 0 = (1/2)*4500*3.07^2 = 21206 J

Final KE = (1/2)(4500+1500)(2.3)^2 = 15870 J

Hence change in KE = 21206 - 15870 = 5336J decrease

Add a comment
Know the answer?
Add Answer to:
A stationary car on a train track, m1 = 1500 kg, is struck by a train,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • HELP ASAP 1500kg car moving at 16 m/s suddenly collides with a stationary car of mass...

    HELP ASAP 1500kg car moving at 16 m/s suddenly collides with a stationary car of mass 1000 kg Problem3 1500-kg car moving at 16.00 m/s suddenly collides with a stationary car of mass 1000 kg a) What is the total initial momentum? b) If the two vehicles lock together, what is their combined velocity immediately after the collision? c)What is change in momentum? d)What is the impulse? e) What is the average force acting on the stationary car by the...

  • Block 1, of mass m1 = 1.10 kg , moves along a frictionless air track with...

    Block 1, of mass m1 = 1.10 kg , moves along a frictionless air track with speed v1 = 29.0 m/s . It collides with block 2, of mass m2 = 45.0 kg , which was initially at rest. The blocks stick together after the collision. (Figure 1) Find the magnitude pi of the total initial momentum of the two-block system. Find vf, the magnitude of the final velocity of the two-block system. What is the change ΔK=Kfinal−Kinitial in the...

  • Block 1, of mass m1 = 2.30 kg, moves along a frictionless air track with speed...

    Block 1, of mass m1 = 2.30 kg, moves along a frictionless air track with speed v1 = 31.0 m/s. It collides with block 2, of mass m2 = 13.0 kg, which was initially at rest. The blocks stick together after the collision. A) Find the magnitude pi of the total initial momentum of the two-block system. B) Find vf, the magnitude of the final velocity of the two-block system C)What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic...

  • A 7,500-kg truck runs into the rear of a 1,000-kg car that was stationary. The truck...

    A 7,500-kg truck runs into the rear of a 1,000-kg car that was stationary. The truck and car are locked together after the collision and move with speed 7 m/s. Compute how much kinetic energy was "lost" in this inelastic collision.

  • A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a...

    A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.900 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.40 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3. Assume that the blocks slide without...

  • A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a...

    A block of mass m1 = 1.10 kg moving at v1 = 1.20 m/s undergoes a completely inelastic collision with a stationary block of mass m2 = 0.900 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.40 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3. Assume that the blocks slide without...

  • Block 1, of mass m1 = 9.10 kg , moves along a frictionless air track with...

    Block 1, of mass m1 = 9.10 kg , moves along a frictionless air track with speed v1 = 27.0 m/s . It collides with block 2, of mass m2 = 13.0 kg , which was initially at rest. The blocks stick together after the collision. What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic energy due to the collision? Express your answer numerically in joules. Before collision: m2 After collision:

  • A block of mass m1 = 1.70 kg moving at v1 = 2.00 m/sundergoes a completely...

    A block of mass m1 = 1.70 kg moving at v1 = 2.00 m/sundergoes a completely inelastic collision with a stationary block of mass m2 = 0.300 kg . The blocks then move, stuck together, at speed v2. After a short time, the two-block system collides inelastically with a third block, of mass m3 = 2.40 kg , which is initially at rest. The three blocks then move, stuck together, with speed v3.(Figure 1) Assume that the blocks slide without...

  • A stationary billiard ball with a mass of 0.17kg, is sturck by an identical ball moving...

    A stationary billiard ball with a mass of 0.17kg, is sturck by an identical ball moving at 4.0 m/s. After the collision, the second ball moves 60 degrees to the left of its original direction. The stationary ball movies 30 degrees to the right of the moving ball's original direction. What is the velocity of each ball after the collision? A stationary billiard ball, with a mass of 0.17 kg, is struck by an identical ball moving at 4.0 m/s....

  • Block 1, of mass m1 = 3.50 kg , moves along a frictionless air track with...

    Block 1, of mass m1 = 3.50 kg , moves along a frictionless air track with speed v1 = 11.0 m/s . It collides with block 2, of mass m2 = 43.0 kg , which was initially at rest. The blocks stick together after the collision. What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic energy due to the collision?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT