Question

A bullet of mass 0.014 kg and initial speed 440 m/s penetrates an initially stationary wooden...

A bullet of mass 0.014 kg and initial speed 440 m/s penetrates an initially stationary wooden block with a of mass 0.44 kg and lodges in it.

How much mechanical energy was lost during the collision? (This mechanical energy was transformed into sound and friction generated heat.)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

m1*u1 = (m1+m2)*V


V = (0.014*440)/(0.014+0.44) = 13.57 m/s


K1 = 0.5*m1*u1^2 = (0.5*0.014*440*440) = 1355.2 J

k2 = 0.5*(m1+m2)*V^2 = 0.5*(0.014+0.44)*13.57*13.57 = 41.8008923


loss = k1 - k2 = 1313.399 J

Add a comment
Answer #2

MEchanical energy lost = 1/2*M*V^2 = 1355.2 J

Add a comment
Answer #3

From conservation of momentum...

mv = (M+m)v

(.014)(440) = (.454)(v)

v = 13.6 m/s

Then the loss of energy is KE - KE

That is --> .5(.014)(440)2 - .5(.454)(13.6)2 = 1313.4 J lost

Add a comment
Know the answer?
Add Answer to:
A bullet of mass 0.014 kg and initial speed 440 m/s penetrates an initially stationary wooden...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Forensics Test 1 2 3 4 As part of a forensics test, a 0.005 kg bullet...

    Forensics Test 1 2 3 4 As part of a forensics test, a 0.005 kg bullet is fired into a 0.52 kg stationary wooden block. The bullet becomes embedded in the block. The initial speed of the bullet is 390 m/s. 1) What is the initial velocity of the center of mass of the bullet-block system before the collision? m/sec Submit 2) What is the velocity of the block (with the embedded bullet) after the collision? m/sec Submit Help 3)...

  • A bullet of mass 12.5 g is fired into an initially stationary block and comes to...

    A bullet of mass 12.5 g is fired into an initially stationary block and comes to rest in the block. The block, of mass 1.12 kg, is subject to no horizontal external forces during the collision with the bullet. After the collision, the block is observed to move at a speed of 4.70 m/s. (a) Find the initial speed of the bullet. (b) How much kinetic energy is lost?

  • A bullet of mass 10.2 g is fired into an initially stationary block and comes to...

    A bullet of mass 10.2 g is fired into an initially stationary block and comes to rest in the block. The block, of mass 1.23 kg, is subject to no horizontal external forces during the collision with the bullet. After the collision, the block is observed to move at a speed of 5.80 m/s. (a) Find the initial speed of the bullet. (b) How much kinetic energy is lost?

  • A 3.90 g bullet moving at 300 m/s enters and stops in an initially stationary 2.80...

    A 3.90 g bullet moving at 300 m/s enters and stops in an initially stationary 2.80 kg wooden block on a horizontal frictionless surface. What's the speed of the bullet/ block combination? What fraction of the bullet's kinetic energy was lost in this perfectly inelastic collision? How much work was done in stopping the bullet? If the bullet penetrated 5.00 cm into the wood, what was the average stopping force?

  • A bullet of mass 1.8×10−3 kg embeds itself in a wooden block with mass 0.987 kg...

    A bullet of mass 1.8×10−3 kg embeds itself in a wooden block with mass 0.987 kg , which then compresses a spring (k = 150 N/m ) by a distance 5.5×10−2 m before coming to rest. The coefficient of kinetic friction between the block and table is 0.54. What is the initial speed of the bullet? Vinit==? What fraction of the bullet's initial kinetic energy is dissipated (in damage to the wooden block, rising temperature, etc.) in the collision between...

  • A bullet of mass 2.0×10−3 kg embeds itself in a wooden block with mass 0.996 kg...

    A bullet of mass 2.0×10−3 kg embeds itself in a wooden block with mass 0.996 kg , which then compresses a spring (k = 120 N/m ) by a distance 4.5×10−2 m before coming to rest. The coefficient of kinetic friction between the block and table is 0.49. A) What is the initial speed of the bullet? B) What fraction of the bullet's initial kinetic energy is dissipated (in damage to the wooden block, rising temperature, etc.) in the collision...

  • A bullet with some mass, m, and initial speed, vi, collides with a wooden block of...

    A bullet with some mass, m, and initial speed, vi, collides with a wooden block of mass M that is hanging at the end of a light rope. The bullet imbeds itself in the block and the block and bullet swings upwards reaching a maximum height of h above the initial point of the collision. a. A scientist can measure the masses and the height, show that the initial speed can then be calculated from the following equation: vi= (m+M)/m×root...

  • A 3.00 g bullet moving at 115 m/s strikes a 50.0 g stationary wooden block and...

    A 3.00 g bullet moving at 115 m/s strikes a 50.0 g stationary wooden block and embeds itself in the block. The bullet is made of lead, and the specific heat of lead is 128 J/(kg · °C). Assume the thermal energy generated in the collision is equally distributed in the bullet and the block. (a) Calculate the rise of temperature (T) of the bullet if block is clamped in place so that it cannot move. (b) Calculate the rise...

  • A 3.00 g bullet moving at 115 m/s strikes a 50.0 g stationary wooden block and...

    A 3.00 g bullet moving at 115 m/s strikes a 50.0 g stationary wooden block and embeds itself in the block. The bullet is made of lead, and the specific heat of lead is 128 J/(kg · °C). Assume the thermal energy generated in the collision is equally distributed in the bullet and the block. (a) Calculate the rise of temperature (DeltaT) of the bullet if block is clamped in place so that it cannot move. (b) Calculate the rise...

  • wooden block with mass M 3 kg is lying on a horizontal table and is attached to a spring in its equilibrium position. It is hit by a bullet with mass m 5 g which moves horizontally. The bullet re...

    wooden block with mass M 3 kg is lying on a horizontal table and is attached to a spring in its equilibrium position. It is hit by a bullet with mass m 5 g which moves horizontally. The bullet remains in the block after colliding with it. The block moves on the table compressing the spring, with spring constant k 50 Nm, a distance 10 cm. The coefficient of kinetic friction uk 0.2. a) Find the elastic energy stored in...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT