Question

A 3.00 g bullet moving at 115 m/s strikes a 50.0 g stationary wooden block and...

A 3.00 g bullet moving at 115 m/s strikes a 50.0 g stationary wooden block and embeds itself in the block. The bullet is made of lead, and the specific heat of lead is 128 J/(kg · °C). Assume the thermal energy generated in the collision is equally distributed in the bullet and the block. (a) Calculate the rise of temperature (DeltaT) of the bullet if block is clamped in place so that it cannot move. (b) Calculate the rise of temperature (DeltaT) of the bullet if block is free to move (on frictionless surface). Please explain and be clear.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A 3.00 g bullet moving at 115 m/s strikes a 50.0 g stationary wooden block and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 3.00 g bullet moving at 115 m/s strikes a 50.0 g stationary wooden block and...

    A 3.00 g bullet moving at 115 m/s strikes a 50.0 g stationary wooden block and embeds itself in the block. The bullet is made of lead, and the specific heat of lead is 128 J/(kg · °C). Assume the thermal energy generated in the collision is equally distributed in the bullet and the block. (a) Calculate the rise of temperature (T) of the bullet if block is clamped in place so that it cannot move. (b) Calculate the rise...

  • A 35.0 g bullet strikes a 5.5 kg stationary wooden block and embeds itself in the...

    A 35.0 g bullet strikes a 5.5 kg stationary wooden block and embeds itself in the block. The block and bullet fly off together at 7.0 m/s. What was the original speed of the bullet?

  • A 4.90-g bullet moving at 578 m/s strikes a 885-g wooden block

    A 4.90-g bullet moving at 578 m/s strikes a 885-g wooden block at rest on a frictionless surface. The bullet emerges, traveling in the same direction with its speed reduced to 379 m/s. (a) What is the resulting speed of the block? (b) What is the impulse transferred from the bullet to the block? ((a) 1.10 m/s,(b)0.975 N s)

  • A 10.0 gram bullet traveling at 275 m/s strikes and embeds itself in a 3.490 kg...

    A 10.0 gram bullet traveling at 275 m/s strikes and embeds itself in a 3.490 kg block of wood held on a frictionless table by a spring having k= 50.0 kg/sec^2. Calculate the speed of the block immediately after the collision and the compression of the spring in meters.

  • A 6.60 g bullet moving at 603 m/s strikes a 660 g wooden block at rest on a frictionless surface

    A 6.60 g bullet moving at 603 m/s strikes a 660 g wooden block at rest on a frictionless surface. The bullet emerges, traveling in the same direction with its speed reduced to 457 m/s. (a) What is the resulting speed of the block? (b) What is the speed of the bullet-block center of mass?  

  • A bullet of mass 0.056 kg traveling horizontally at a speed of 100 m/s embeds itself...

    A bullet of mass 0.056 kg traveling horizontally at a speed of 100 m/s embeds itself in a block of mass 1.5 kg that is sitting at rest on a nearly frictionless surface. (a) What is the speed of the block after the bullet embeds itself in the block? v= m/s (b) Calculate the kinetic energy of the bullet plus the block before the collision: K; = (c) Calculate the kinetic energy of the bullet plus the block after the...

  • A 2.50 q bullet, traveling at a speed of 480 m/s, strikes the wooden block of...

    A 2.50 q bullet, traveling at a speed of 480 m/s, strikes the wooden block of a ballistic pendulum, such as that in Figure 7.14. The block has a mass of 270 g. (a) (b) +m Figure 7.14 (a) Find the speed of the bullet/block combination immediately after the collision. m/s (b) How high does the combination rise above its initial position? m

  • A 7.30 g bullet traveling at 490 m/s embeds itself in a 1.65 kg wooden block...

    A 7.30 g bullet traveling at 490 m/s embeds itself in a 1.65 kg wooden block at rest on a frictionless surface. . The block is attached to a spring with k = 90.0 N/mFind the period.Find the amplitude of the subsequent simple harmonic motion.Find the total energy of the bullet+block+spring system before the bullet enters the block.Find the total energy of the bullet+block+spring system after the bullet enters the block.

  • A 0.0260 kg bullet moving horizontally at 450 m/s embeds itself into an initially stationary 0.500...

    A 0.0260 kg bullet moving horizontally at 450 m/s embeds itself into an initially stationary 0.500 kg block (a) What is their velocity just after the collision? m/s (b) The bullet-embedded block slides 8.0 m on a horizontal surface with a 0.30 kinetic coefficient of friction. Now what is its velocity? my's (c) The bullet embedded block now strikes and sticks to a stationary 2.00 kg block. How far does this combination travel before stopping? חח Additional Materials Reading

  • A 5.20g bullet moving at 672 m/s strikes a 700g wooden block atrest on a frictionless...

    A 5.20g bullet moving at 672 m/s strikes a 700g wooden block atrest on a frictionless surface. The bullet emerges, travelingin the same direction with its speed reduced to 428 m/s. a. What is the resulting speed of the block? b. What is the speed of the bullet-block center of mass?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT