Question

VII. Calculations of the Conformations of Substituted Cyclohexanes In this exercise, you will examine the conformational equi

need the answer to the question:
calculate the difference in energy between the axial and equatorial conformations.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Energy of equatorial conformation of methyl cyclohexane - 6-8919 Energy of axial conformation of methyl cyclohexane – 866618

Add a comment
Know the answer?
Add Answer to:
need the answer to the question: calculate the difference in energy between the axial and equatorial...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The cyclohexane derivative shown exists primarily in the more stable of the two available chair conformations. Give the position, axial or equatorial, of each of the three groups shown in the more st...

    The cyclohexane derivative shown exists primarily in the more stable of the two available chair conformations. Give the position, axial or equatorial, of each of the three groups shown in the more stable chair conformation. If a group divides its time equally between axial and equatorial positions, indicate this with ax/eq The table of "Axial Strain Energies for Monosubstituted Cyclohexanes" found in the "Strain Energy Increments" section of the Reference tool is useful for answering this question. CH-CH2 CI Group...

  • Is it axial, equatorial, or ax/eq? The cyclohexane derivative shown exists primarily in the more stable...

    Is it axial, equatorial, or ax/eq? The cyclohexane derivative shown exists primarily in the more stable of the two available chair conformations. Give the position, axial or equatorial, of each of the three groups shown in the more stable chair conformation. If a group divides its time equally between axial and equatorial positions, indicate this with ax/eq. The table of "Axial Strain Energies for Monosubstituted Cyclohexanes" found in the "Strain Energy Increments" section of the Reference tool is useful for...

  • a. What is the energy difference between the axial and the equatorial conformation of: methyl 5.75...

    a. What is the energy difference between the axial and the equatorial conformation of: methyl 5.75 , isopropyl 22.96 t-butyl_25,98 b. Explain the above differences.

  • Hello I have a question. Following are the alternative chair conformations for trans-2-bromocyclohexanamine: . Using the...

    Hello I have a question. Following are the alternative chair conformations for trans-2-bromocyclohexanamine: . Using the data for ΔG for monosubstituted cyclohexanes at room temperature (25ºC) and the representative value* for the gauche interaction of two equatorially positioned substituents in the 1,2-position: a) Calculate the difference in the Gibbs free energy between the second and first conformation including the algebraic sign. kJ/mol b) Given your value in (a), calculate the percent of the chair, indicated as B, presented in an...

  • Following are the alternative chair conformations for trans-2-methylcyclohexanamine: NH2 NH2 CHз CH3 A Using the data...

    Following are the alternative chair conformations for trans-2-methylcyclohexanamine: NH2 NH2 CHз CH3 A Using the data for AG for monosubstituted cyclohexanes at room temperature (25°C) and the representative value* for the gauche interaction of two equatorially positioned substituents in the 1,2-position: axial equatorial AG° (kJ/mol) Group AG° (kJ/mol) Group C=N NH2 CH3 1,2-gauche -5.9 -0.8 -2.4 -7.3 Br ОН -3.9 3.8 kJ/mol a) Calculate the difference in the Gibbs free energy between the second and first conformation including the algebraic...

  • References button, Strain Energy Increments) to calculate the energy difference between the two chair conformations of...

    References button, Strain Energy Increments) to calculate the energy difference between the two chair conformations of the compound below. b. Specify substituent positions (axial or equatorial) in the more stable chair. c. Estimate the percent of the more stable chair at equilibrium at 25°C. (To determine the percent of the more stable chair at equilibrium, fir calculate Keaq, and then use this value to find the percentage.) CH3 CH3 Answers: a. The energy difference is 4 b. In the more...

  • Following are the alternative chair conformations for trans-1,4-dimethylcyclohexane: . Using the data for ΔG for monosubstituted...

    Following are the alternative chair conformations for trans-1,4-dimethylcyclohexane: . Using the data for ΔG for monosubstituted cyclohexanes at room temperature (25ºC) and the representative value* for the gauche interaction of two equatorially positioned substituents in the 1,2-position: a) Calculate the difference in the Gibbs free energy between the second and first conformation including the algebraic sign. kJ/mol b) Given your value in (a), calculate the percent of the chair, indicated as B, presented in an equilibrium mixture of the conformers...

  • Using the table below, calculate the difference in energy between a) the lowest energy conformations of...

    Using the table below, calculate the difference in energy between a) the lowest energy conformations of cis- and trans-1,2-dimethylcyclohexane. b) the highest and lowest energy conformations of methyl cyclohexane, trans-1,2-dimethylcyclohexane and cis-1,3-dimethylcyclohexane Type of Strain Interaction Associated Energy Eclipsing of a pair of H's 4kj/mol Eclipsing of a H and a CH3 group 6kj/mol Eclipsing of a pair of CH3 groups 11kj/mol Gauche (60) Interactin between CH3 Groups 3.8 kj/mol 1,3 CH3 to H Interaction on Cyclohexane Chair 3.8kj/mol 1,3...

  • Could you please explain how can I get the answer of Q13 "only (b) " 13....

    Could you please explain how can I get the answer of Q13 "only (b) " 13. (a) The conformations of some highly substituted cyclohexanes were studied (Dalton Trans 2013, 42, 13404). The two chair conformations for compound J differ by 18 kcal/mol, draw the more stable chair conformation of compound J. Include all 6 substituents and the hydrogen atoin groups associated with each vertex. Take care to create a clear drawing (11o11-boricding electrons do not need to be shown). N(CH3)2...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT