Question

العداله که درجات A processfuld having a specific heat of 3500 kg and flowing at 2 kgs is to be cooled from 80°C to 50°C with





0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
العداله که درجات A processfuld having a specific heat of 3500 kg and flowing at 2...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • (b) Exhaust gases flowing through a tubular heat exchanger at the rate of 0.3 kg/s are cooled from 400 to 120°C by w...

    (b) Exhaust gases flowing through a tubular heat exchanger at the rate of 0.3 kg/s are cooled from 400 to 120°C by water initially at 10°C. The specific heat capacity of the exhaust gases and water may be taken as 1.13 and 4.19 kJ/kg°C, respectively, and the overall heat transfer coefficient from gases to water is 140 W/m2°C. Calculate the surface area required when the water flow rate is 0.4 kg/s for (6 marks) (4 marks) (i) (ii) Parallel flow...

  • Please use the NTU method. I am having trouble. 2. A cross-flow heat exchanger with surface...

    Please use the NTU method. I am having trouble. 2. A cross-flow heat exchanger with surface area A, , is desd with inlet conditions The = 350°C and T,,i = 20°C, and outlet condition Te,o-14°C. If hot air with miass flow mh = 2.2 -g is used to heat pressurized water flowing at mc = 0.6 kg, what is the overall heat transfer coefficient of the exchanger? The water remains in the liquid state and evaluate thermal properties of the...

  • Help me!!!! Q2. Heat exchanger-NTU method (34 pt). An orange juice is being cooled from 85...

    Help me!!!! Q2. Heat exchanger-NTU method (34 pt). An orange juice is being cooled from 85 °C at a rate of 2000 kg/h in a counter-current heat exchanger by cold water. The juice has a specific heat of 3090 J/(kg.K). The cold water enters the heat exchanger at 8°C at a rate of 2950 kg/h、The overall heat transfer coefficient U-485 w/mK and the area A 4.2 m2. Assuming steady-state conditions, calculate: (a) the heat transfer rate (J/s), (b) the exit...

  • 1) 2.5 m3/s of air at 150°C is used to heat 0.342 kg/s of 20°C water....

    1) 2.5 m3/s of air at 150°C is used to heat 0.342 kg/s of 20°C water. The heat exchanger is a finned-tube cross flow heat exchanger with both sides unmixed. The overall heat transfer coefficient associated with the hot side is 120 W/(m2°C). The hot-side area is 20 m2. Assume a constant specific heat for air and water of Crezia = 1.005 kJ/(kgº), Crewater = 4.2 kJ/(kg °C). The pressure of the hot air is P = 1.0 atm. The...

  • 2) Hot air enters a heat exchanger at 350°C and exits at 153°C. The heat extracted...

    2) Hot air enters a heat exchanger at 350°C and exits at 153°C. The heat extracted is used to boil 0.277 kg/s of 100°C water (from saturated liquid to saturated steam). The heat exchanger is a single-shell shell-and-tube heat exchanger with two tube passes. The overall heat transfer coefficient for the hot side is 240 W/(m2). Assume a constant specific heat for air of cp = 1.005 kJ/(kg°C). The pressure of the hot air and the boiling water is P...

  • 1) 2.5 m/s of air at 150°C is used to heat 0.35 kg/s of 20°C water....

    1) 2.5 m/s of air at 150°C is used to heat 0.35 kg/s of 20°C water. The heat exchanger is a finned-tube cross flow heat exchanger with both sides unmixed. The overall heat transfer coefficient associated with the hot side is 120 W/(m2 °C). The hot-side area is 20 m². Assume a constant specific heat for air and water of Gezic = 1.005 kJ/(kg °C), Senator = 4.2 kJ/(kg °C). The pressure of the hot air is P = 1.0...

  • Hot air enters a heat exchanger at 350°C and exits at (149°C. The heat extracted is...

    Hot air enters a heat exchanger at 350°C and exits at (149°C. The heat extracted is used to boil (0.263) kg/s of 100°C water (from saturated liquid to saturated steam). The heat exchanger is a single-shell shell-and-tube heat exchanger with two tube passes. The overall heat transfer coefficient for the hot side is 240 W/(m2°C). Assume a constant specific heat for air of Cp = 1.005 kJ/(kgC). The pressure of the hot air and the boiling water is P =...

  • Heat transfer 1) 2.5 m/s of air at 150°C is used to heat (0.25 + /250)=0.254...

    Heat transfer 1) 2.5 m/s of air at 150°C is used to heat (0.25 + /250)=0.254 kg/s of 20°C water. The heat exchanger is a finned-tube cross flow heat exchanger with both sides unmixed. The overall heat transfer coefficient associated with the hot side is 120 W/(m2 °C). The hot-side area is 20 m². Assume a constant specific heat for air and water of Cecair = 1.005 kJ/(kg °C), Crewater = 4.2 kJ/(kg). The pressure of the hot air is...

  • Twenty [kw] of heat is to be removed from 375 [k] water flowing at 0.15 [kg/s] into the inner pipe of concentric tube heat exchanger. Cooling water enters the annulus at 290 [k] and leaves at 320...

    Twenty [kw] of heat is to be removed from 375 [k] water flowing at 0.15 [kg/s] into the inner pipe of concentric tube heat exchanger. Cooling water enters the annulus at 290 [k] and leaves at 320 [k] with a flow in the opposite direction of the inner flow. The diameter of the thin- walled inner pipe is 2.5 [cm] a) b) c) Calculate the exit temperature of the hot fluid and the mass flow rate of the cold fluid...

  • A cross-flow heat exchanger used in a cardiopulmonary bypass procedure cools blood flowing at 4 L/min...

    A cross-flow heat exchanger used in a cardiopulmonary bypass procedure cools blood flowing at 4 L/min from a body temperature of 37°C to 25°C in order to induce body hypothermia, which reduces metabolic and oxygen requirements. The coolant is ice water at 0°C, and its flow rate is adjusted to provide an outlet temperature of 13°C. The heat exchanger operates with the blood flow unmixed and the water flow mixed, and the overall heat transfer coefficient is 750 W/m2.K. The...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT