Question

3. Consider a system consisting of a Ikg mass connected to a spring with spring co -ION/. and a friction coefficient of 6N/m,
0 0
Add a comment Improve this question Transcribed image text
Answer #1

m=1kg, k=100 0 kolo N b = 6 MS/M F = 15 cos at 19) ega of motion P er of motion: restoring force clamping face criven force =16) Xp = steady state response Xe a transient response - (1) here k h = 10 4m2 - 4 = undee clamped . 4m2

Add a comment
Know the answer?
Add Answer to:
3. Consider a system consisting of a Ikg mass connected to a spring with spring co...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a single degree of freedom (SDOF) with mass-spring-damper system

     Consider a single degree of freedom (SDOF) with mass-spring-damper system subjected to harmonic excitation having the following characteristics: Mass, m = 850 kg; stiffness, k = 80 kN/m; damping constant, c = 2000 N.s/m, forcing function amplitude, f0 = 5 N; forcing frequency, ωt = 30 rad/s. (a) Calculate the steady-state response of the system and state whether the system is underdamped, critically damped, or overdamped. (b) What happen to the steady-state response when the damping is increased to 18000 N.s/m? (Hint: Determine...

  • damped forced mass-spring system with m 2, and k 26, under the 2 Consider a influence...

    damped forced mass-spring system with m 2, and k 26, under the 2 Consider a influence of an external force F(t)= 82 cos (4t) 1, 7 = a) (8 points) Find the position u(t) of the mass at any time t, if u(0) 6 and u'(0) = 0. b) (4 points) Find the transient solution u(t) and the steady state solution U(t). How would you characterize these two solutions in terms of their behavior in time? We were unable to...

  • Consider a damped forced mass-spring system with m = 1, γ = 2, and k =...

    Consider a damped forced mass-spring system with m = 1, γ = 2, and k = 26, under the influence of an external force F(t) = 82 cos(4t). a) (8 points) Find the position u(t) of the mass at any time t, if u(0) = 6 and u 0 (0) = 0. b) (4 points) Find the transient solution uc(t) and the steady state solution U(t). How would you characterize these two solutions in terms of their behavior in time?...

  • A damped osillator has a mass (m = 2.00kg), a spring (k = 10.0N/m), and a...

    A damped osillator has a mass (m = 2.00kg), a spring (k = 10.0N/m), and a damping coefficient b = 0.102kg/s. undamped angular frequency of the system is 2.24rad/s. If the initial amplitude is 0.250m, How many periods of motion are necessary for the amplitude to be reduced to 3/4 it initial value? is this system underdamped, critically damped, or overdamped

  • Frequency Response of a mass-spring-dashpot system Consider a mass-spring-dashpot system driven b...

    Use matlab for the following: Frequency Response of a mass-spring-dashpot system Consider a mass-spring-dashpot system driven by a unit amplitude harmonic input mdx/dt+ cdx/dt + kx- Sin (wt) Use Matlab to simulate time response for ten well-chosen values of w for 3 different values of dimensionless damping factor : 0, between 0 and 1, larger than 1. Record and plot the steady state values of amplitude. Frequency Response of a mass-spring-dashpot system Consider a mass-spring-dashpot system driven by a unit...

  • ® Consider a damped unforced mass-spring system with m 1, γ 2, and k 26. a) (2 points) Find if th...

    solve d ,e , f, g ® Consider a damped unforced mass-spring system with m 1, γ 2, and k 26. a) (2 points) Find if this system is critically damped, underdamped, or overdamped. b) (4 points) Find the position u(t) of the mass at any time t if u(0)-6 and (0) 0. c) (4 points) Find the amplitude R and the phase angle δ for this motion and express u(t) in the form: u(t)-Rcos(wt -)e d) (2 points) Sketch...

  • We are designing a system that is critically damped. Consider a spring mass damper design where...

    We are designing a system that is critically damped. Consider a spring mass damper design where mass is m=1 kg and the system has to be critically damped. If we want y(t)=te-t as the response, determine the damping constant b and spring constant k. Since it is critically damped, also find the two initial conditions that gives the desired response.

  • 4. (20 points) A mass pring system has a mass of kg, a damping constant of...

    4. (20 points) A mass pring system has a mass of kg, a damping constant of kg/sec and a spring constant of 15 kg/sec2. There is no external force. The system is started in motion at y 4 meters with an initial velocity of 3 m/s in the downward direction. a) Find the differential equation and the initial conditions that describe the motion of this system. b) Solve the resulting initial value problem. c) Is the spring system overdamped, underdamped...

  • 6. A mass of 2 kilogram is attached to a spring whose constant is 4 N/m, and the entire system is...

    6. A mass of 2 kilogram is attached to a spring whose constant is 4 N/m, and the entire system is then submerged in a liquid that inparts a damping force equal to 4 tines the instantansous velocity. At t = 0 the mass is released from the equilibrium position with no initial velocity. An external force t)4t-3) is applied. (a) Write (t), the external force, as a piecewise function and sketch its graph b) Write the initial-value problem (c)Solve...

  • Consider a mass-spring-dashpot system in which the mass is m = 4 lb-sec^2/ft, the damping constant...

    Consider a mass-spring-dashpot system in which the mass is m = 4 lb-sec^2/ft, the damping constant is c =24 lb-sec/ft, and the spring constant is k=52lb/ft. The motion is free damped motion and the mass is set in motion with initial position x0=5ft and the initial velocity v0= -7ft/sec. Find the position function x(t) and determine whether the motion is overdamped, critically damped, or underdamped.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT