Question

Consider the situation depicted below, in which an incompressible fluid flows over a flat surface of solid. Upstream of the surface, the fluid has velocity U and uniform temperature To. As the fluid is viscous, both a momentum boundary layer, and a thermal boundary layer form, and heat is transferred to the solid surface. A convective coefficient h can be used to describe the dimensional heat transfer rate to the solid, and is a function of L, the location along the surface. a.) If the flow in the boundary layer is steady and laminar, write out the appropriate dimensional equations for the conservation of mass (of the fluid), momentum, and energy for this situation. Also write out the equation for the convection coefficient. You may assume that the entire situation is two-dimensional and that du/dr, the second derivative of the x-direction velocity with respect to x (the direction along the plate) is equal to zero. *HINT: See the equations in the textbook provided for mass and momentum equations for laminar boundary layer b.) Non-dimensionalize the governing equations in part a.) with the parameters provided in the diagram below used as normalization constants. Be sure to define all dimensionless variables used. What is the dimensionless number parameterizing the convection coefficient (h) and what dimensionless ratios does it depend upon?

Please make the hand writing legible. Thanks

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Please make the hand writing legible. Thanks Consider the situation depicted below, in which an incompressible...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Fluid Mechanics. Please answer as many as you can. Short answer questions 1) Explain the physical...

    Fluid Mechanics. Please answer as many as you can. Short answer questions 1) Explain the physical meaning of the acceleration term uVu, where u is the velocity vector in a fluid. 2) Name the two equations that are required to describe the flow of an inertial jet in an incompressible, unstratified fluid. 3) What is the “Continuum Hypothesis”? 4) Describe how a viscous boundary layer adjacent to a solid surface results in transfer of momentum to/from that surface. 5) What...

  • PROBLEM 1: Answer/Define/Explain shortly and/or Fill in the blanks (40 P) a) What are the two...

    PROBLEM 1: Answer/Define/Explain shortly and/or Fill in the blanks (40 P) a) What are the two types of energy transfer in Convection? b) A thermal boundary layer must develop if ....... c) Define the critical Reynolds number. d) What are the assumptions for Boundary Layer Equations for Laminar Flow? e) Define the Nusselt number. f) Define the Prandtl number. g) How the Pr influences the relative growth of the boundary layers, explain briefly ? h) Explain favorable pressure gradient. i)...

  • Cooling fins are used to increase the area available for heat transfer between metal walls and...

    Cooling fins are used to increase the area available for heat transfer between metal walls and poorly conducting fluids such as gases. A rectangular fin is shown in the following figure. To design a cooling fin and calculate the fin efficiency one must first calculate the temperature profile in the fin. If L>>B, no heat is lost from the end or from the edges, and the heat flux at the surface is given by: in which the convective heat transfer...

  • A. In the table below, identify which of the circled terms of the governing equations can...

    A. In the table below, identify which of the circled terms of the governing equations can be neglected by the given assumption. Write the number of the term in the table. Some assumptions relate to multiple terms, include them all. B.  Write the mathematical equations describing the appropriate boundary conditions and identify them in words. C.  Applying the appropriate boundary conditions, solve the differential equation remaining after appropriate terms have been neglected to determine the velocity profile in the film: d^2(w)/dx^2 =...

  • (Re_x)_cr=5(10^5) au ar +0 ay au dy? Revie ди ar + =0 ду Water flows past...

    (Re_x)_cr=5(10^5) au ar +0 ay au dy? Revie ди ar + =0 ду Water flows past a flat plate of length L = 15 cm at U = 2 m/s. What is the disturbance thickness of the boundary layer at = 10 cm from the front of the plate? The properties of water are pw = 1000 kg/m” and Vw = 1x10-6 m/s Express your answer in mm to three significant figures. View Available Hint(s) 8 = 1.12 mm Submit...

  • Fr the falling fm . Lerive anl vcloci Pey o 42) assumin 5 usinte equatienmtion (6.5-3), niam it...

    fr the falling fm . Lerive anl vcloci Pey o 42) assumin 5 usinte equatienmtion (6.5-3), niam ity, average velocity, or force on solid surfaces. tion appear, and In the integrations mentioned above, several constants of integration a the velocit stress at the boundaries of the system. The most commonly used boundae are as follows: using "boundary conditions"-that is, statements about a. At solid-fluid interfaces the fluid velocity equals the velocity with which surface is moving: this statement is applied...

  • summatize the following info and break them into differeng key points. write them in yojr own...

    summatize the following info and break them into differeng key points. write them in yojr own words   apartus 6.1 Introduction—The design of a successful hot box appa- ratus is influenced by many factors. Before beginning the design of an apparatus meeting this standard, the designer shall review the discussion on the limitations and accuracy, Section 13, discussions of the energy flows in a hot box, Annex A2, the metering box wall loss flow, Annex A3, and flanking loss, Annex...

  • summarizr the followung info and write them in your own words and break them into different...

    summarizr the followung info and write them in your own words and break them into different key points.   6.5 Metering Chamber: 6.5.1 The minimum size of the metering box is governed by the metering area required to obtain a representative test area for the specimen (see 7.2) and for maintenance of reasonable test accuracy. For example, for specimens incorporating air spaces or stud spaces, the metering area shall span an integral number of spaces (see 5.5). The depth of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT