Question

Vibrations (don’t have pic) There is a 1-DOF system that has mass 1 kg, spring stiffness...

Vibrations (don’t have pic)
There is a 1-DOF system that has mass 1 kg, spring stiffness 100 N/m.
Q: Free vibration was done to the system and the magnitude of the vibration decreased by 10% per period. How much is the damping coefficient?
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Vibrations (don’t have pic) There is a 1-DOF system that has mass 1 kg, spring stiffness...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2 with spring stiffness k 1000 N/m, Consider a mass-spring-damper system shown in Figure mass m...

    2 with spring stiffness k 1000 N/m, Consider a mass-spring-damper system shown in Figure mass m = 10 kg, and damping constant c-150 N-s/m. If the initial displacement is xo-o and the initial velocity is 10 m/s (1) Find the damping ratio. (2) Is the system underdamped or overdamped? Why? (3) Calculate the damped natural frequency (4) Determine the free vibration response of the system.

  • Single Degree of Freedom -Free Damped Vibration of Machines and Vibrations problem shows a lever ...

    Single Degree of Freedom -Free Damped Vibration of Machines and Vibrations problem shows a lever with spring, mass and damper system. The lever has a moment p9 shows a lever with Agure so kgm2 pivoted at point O with a pulley of mass 4 kg with a radius r-0.5 m Vibration and and load mp4 kg. The load stioping between the puiley and cable supporting the load m. The stiffiess coefficient sippie spring isk=2x105 N/m. Calculate the following when the...

  • A single dof vibration system, modeled by a mass of 50 kg, damping coefficient of 300...

    A single dof vibration system, modeled by a mass of 50 kg, damping coefficient of 300 Ns/m, and spring constant of 5000 N/m, is subjected to periodic displacement excitation u(t) as shown in the figure below. 1. Derive the equation of motion 2. Using Laplace transform, find characteristic equation. 3. Find the undamped and damped natural frequencies. 4. Find the damping ratio. 5. Find the transfer function of output x(t) to the periodic input u(t) using Laplace transform.

  • 6-B) A weight attached to a spring of stiffness 982 N/m has a viscous damping device....

    6-B) A weight attached to a spring of stiffness 982 N/m has a viscous damping device. When the weight is displaced and released, the period of vibration is 1.02 s, and the magnitude of consecutive amplitudes is 0.61 m and 0.29 m. a) Identify the mass (m) and damping (c) coefficient. b) Determine the amplitude and phase of the response when a force, f(t) = 4.2 cos (6.31) N, acts on the system.

  • Problem 2 (20%) Free Vibration with Velocity Dependent Force. Consider a 1 DOF system consisting of...

    Problem 2 (20%) Free Vibration with Velocity Dependent Force. Consider a 1 DOF system consisting of a block with mass 2 kg hanging from a spring with stiffness 100 N/m. The block is fully immersed in the liquid and based on the properties of the liquid, you have determined experimentally that the drag force (damping force) on the block has a magnitude of 0.91*] where x is velocity and 0.9 has units (Ns/m). Assume positive displacement of the block is...

  • On a ECP Rectilinear Plant (1 DOF system) mass-spring-damper system, I am given the transfer func...

    On a ECP Rectilinear Plant (1 DOF system) mass-spring-damper system, I am given the transfer function as: 1/(M*s^2 + B*s + K). With values mass M = 0.67538 kg, friction coefficient B = 1.8951 Ns/M, spring constant K = 322.278 N/M, and Damping coefficient d=2.54821 Ns/m. I know the Open loop system model is: (1/(0.6738s^2 + 1.89515s + 322.278)) = (1.481/(s^2+2.806s+4.772)) Implement a simple controller using only one mass (+spring + damper) so the control is critically damped

  • On a ECP Rectilinear Plant (1 DOF system) mass-spring-damper system, I am given the transfer function...

    On a ECP Rectilinear Plant (1 DOF system) mass-spring-damper system, I am given the transfer function as: 1/(M*s^2 + B*s + K). With values mass M = 0.67538 kg, friction coefficient B = 1.8951 Ns/M, spring constant K = 322.278 N/M, and Damping coefficient d=2.54821 Ns/m. I know the Open loop system model is: (1/(0.6738s^2 + 1.89515s + 322.278)) = (1.481/(s^2+2.806s+4.772)) Implement a simple controller using only one mass (+spring + damper) so the control is critically damped

  • Answer last four questions 1. A spring-mass-damper system has mass of 150 kg, stiffness of 1500...

    Answer last four questions 1. A spring-mass-damper system has mass of 150 kg, stiffness of 1500 N/m and damping coefficient of 200 kg/s. i) Calculate the undamped natural frequency ii) Calculate the damping ratio iii) Calculate the damped natural frequency iv) Is the system overdamped, underdamped or critically damped? v) Does the solution oscillate? The system above is given an initial velocity of 10 mm/s and an initial displacement of -5 mm. vi) Calculate the form of the response and...

  • A -kg mass is attached to a spring with stiffness 10 N/m. The damping constant for the system is ...

    A -kg mass is attached to a spring with stiffness 10 N/m. The damping constant for the system is 2 4 N-sec/m. If the mass is moved - m to the left of equilibrium and given an initial rightward velocity of - m/sec, determine the equation of motion of the mass and give its damping factor, quasiperiod, and quasifrequency. What is the equation of motion? 15 2 (Type an exact answer, using radicals as needed.) A -kg mass is attached...

  • 1. A SDOF system with an equivalent mass of 20 kg, an equivalent stiffness of 3x10'...

    1. A SDOF system with an equivalent mass of 20 kg, an equivalent stiffness of 3x10' N/m and an equivalent viscous damping coefficient of 2500 Ns/m. The system is subject to a sinusoidal pulse of pulse of magnitude 20000 N and total duration of 0.05 sec. Use the response spectrum for a sinusoidal pulse to determine the maximum displacement of the system.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT