Question

Let f0, f1, f2, . . . be the Fibonacci sequence defined as f0 = 0,...

Let f0, f1, f2, . . . be the Fibonacci sequence defined as f0 = 0, f1 = 1, and for every k > 1, fk = fk-1 + fk-2.

Use induction to prove that for every n ? 0, fn ? 2n-1 . Base case should start at f0 and f1. For the inductive case of fk+1 , you’ll need to use the inductive hypothesis for both k and k ? 1.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Proof using Induction:

Both autuehmce base tase helels u C K+1 27-1 k-l u8

Add a comment
Know the answer?
Add Answer to:
Let f0, f1, f2, . . . be the Fibonacci sequence defined as f0 = 0,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Exercise 6. Let En be the sequence of Fibonacci numbers: Fo = 0, F1 = 1,...

    Exercise 6. Let En be the sequence of Fibonacci numbers: Fo = 0, F1 = 1, and Fn+2 = Fn+1 + Fn for all natural numbers n. For example, F2 = Fi + Fo=1+0=1 and F3 = F2 + F1 = 1+1 = 2. Prove that Fn = Fla" – BM) for all natural numbers n, where 1 + a=1+ V5 B-1-15 =- 2 Hint: Use strong induction. Notice that a +1 = a and +1 = B2!

  • The Fibonacci Sequence F1, F2, ... of integers is defined recursively by F1=F2=1 and Fn=Fn-1+Fn-2 for each integer . Pro...

    The Fibonacci Sequence F1, F2, ... of integers is defined recursively by F1=F2=1 and Fn=Fn-1+Fn-2 for each integer . Prove that (picture) Just the top one( not 7.23) n 3 Chapter 7 Reviewing Proof Techniques 196 an-2 for every integer and an ao, a1, a2,... is a sequence of rational numbers such that ao = n > 2, then for every positive integer n, an- 3F nif n is even 2Fn+1 an = 2 Fn+ 1 if n is odd....

  • The Fibonacci numbers are defined as follows, f1=1, f2=1 and fn+2=fn+fn+1 whenever n>= 1. (a) Characterize...

    The Fibonacci numbers are defined as follows, f1=1, f2=1 and fn+2=fn+fn+1 whenever n>= 1. (a) Characterize the set of integers n for which fn is even and prove your answer using induction (b) Please do b as well. The Fibonacci numbers are defined as follows: fi -1, f21, and fn+2 nfn+1 whenever n 21. (a) Characterize the set of integers n for which fn is even and prove your answer using induction. (b) Use induction to prove that Σ. 1...

  • The Fibonnaci sequence is a recursive sequence defined as: f0 = 1, f1 = 1, and...

    The Fibonnaci sequence is a recursive sequence defined as: f0 = 1, f1 = 1, and fn = fn−1 + fn−2 for n > 1 So the first few terms are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .. Write a function/procedure/algorithm that computes the sum of all even-valued Fibonnaci terms less than or equal to some positive integer k. For example the sum of all even-valued Fibonnaci terms less than or equal to 40...

  • C++ Fibonacci Complete ComputeFibonacci() to return FN, where F0 is 0, F1 is 1, F2 is...

    C++ Fibonacci Complete ComputeFibonacci() to return FN, where F0 is 0, F1 is 1, F2 is 1, F3 is 2, F4 is 3, and continuing: FN is FN-1 + FN-2. Hint: Base cases are N == 0 and N == 1. #include <iostream> using namespace std; int ComputeFibonacci(int N) { cout << "FIXME: Complete this function." << endl; cout << "Currently just returns 0." << endl; return 0; } int main() { int N = 4; // F_N, starts at...

  • Fibonacci sequence: Cauchy-Binet formula Let (Fn)n be the Fibo- nacci sequence defined recursively by F1 =...

    Fibonacci sequence: Cauchy-Binet formula Let (Fn)n be the Fibo- nacci sequence defined recursively by F1 = F2 = 1 and Fn = Fn−1 + Fn−2In this way it all reduces to computing a high power of a 2 × 2 matrix. How can you compute an arbitrary power of a matrix and can you come up with the Cauchy-Binet formula from here?

  • F0 = 0, F1 = 1. Thus: F2 = F1 + F0 = 1 + 0...

    F0 = 0, F1 = 1. Thus: F2 = F1 + F0 = 1 + 0 = 1, F3 = F2 + F1 = 1 + 1 = 2, F4 = F3 + F2 = 2 + 1 = 3, ... Write a program that asks how many Fibonacci numbers to compute and then show each number. for C++ beginer

  • 3. The sequence (Fn) of Fibonacci numbers is defined by the recursive relation Fn+2 Fn+1+ F...

    3. The sequence (Fn) of Fibonacci numbers is defined by the recursive relation Fn+2 Fn+1+ F for all n E N and with Fi = F2= 1. to find a recursive relation for the sequence of ratios (a) Use the recursive relation for (F) Fn+ Fn an Hint: Divide by Fn+1 N (b) Show by induction that an 1 for all n (c) Given that the limit l = lim,0 an exists (so you do not need to prove that...

  • Problem 7.8 (Explore: Fibonacci Identities). The Fibonacci numbers are a famous integer sequence:...

    discrete math Problem 7.8 (Explore: Fibonacci Identities). The Fibonacci numbers are a famous integer sequence: Fn) o 0, 1, 1,2,3, 5, 8, 13, 21, 34, 55, 89,... defined recursively by Fo 0, F1, and F F Fn-2 for n2 2. (a) Find the partial sums Fo+Fi +F2, Fo+ Fi +F2Fs, Fo + Fi + F2+Fs +F, FoF1+F2+ Fs+F4F (b) Compare your partial sums above with the terms of the Fibonacci sequence. Do you see any patterns? Make a conjecture for...

  • (5) Fibonacci sequences in groups. The Fibonacci numbers Fn are defined recursively by Fo 0, F1...

    (5) Fibonacci sequences in groups. The Fibonacci numbers Fn are defined recursively by Fo 0, F1 -1, and Fn - Fn-1+Fn-2 forn 2 2. The definition of this sequence only depends on a binary operation. Since every group comes with a binary operation, we can define Fibonacci- type sequences in any group. Let G be a group, and define the sequence {fn in G as follows: Let ao, a1 be elements of G, and define fo-ao, fi-a1, and fn-an-1an-2 forn...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT