Question

n Given that the moment of inertia about a diameter of a uniform hollow thin spherical shell of mass m and radius r is jmr2. Show that the moment of inertia about a diameter of a non-uniform sphere of radius R with the volume mass density distribution given by por) (1-), where r denotes the radial distance from the center, is 1 MR2. (Hint: Imagine the sphere is made of infinitely many layers of 15M 8TtR3 very thin concentric spherical shells.)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

S 1R

Add a comment
Know the answer?
Add Answer to:
n Given that the moment of inertia about a diameter of a uniform hollow thin spherical...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Results given on page 300 TABLE 12.2 Moments of inertia of objects with uniform density Object...

    Results given on page 300 TABLE 12.2 Moments of inertia of objects with uniform density Object and axis Picture Object and axis Picture Thin rod, about center MCylinder or disk, MR 2 about center Thin rod about end ML Cylindrical hoop, MR2 about center Plane or slab, about center Маг | Solid sphere, about RMR2 diameter Plane or slab, about edge 1Ma2 I spherical shell, about diameter MR2 5. Again, use the table of integration results on page 300 of...

  • Results given on page 300: TABLE 12.2 Moments of inertia of objects with uniform density Object...

    Results given on page 300: TABLE 12.2 Moments of inertia of objects with uniform density Object and axis Picture Object and axis Picture Thin rod about center Cylinder or disk, ML MR2 about center Thin rod about end ML Cylindrical hoop, MR2 about center Plane or slab, about center Solid sphere, about diameter 3MR2 Plane or slab, about edge Ma Spherical shell, about diameter MR2 4. Use the results on page 300 of the textbook to do the following: A...

  • Results given on page 300 TABLE 12.2 Moments of inertia of objects with uniform density Object...

    Results given on page 300 TABLE 12.2 Moments of inertia of objects with uniform density Object and axis Picture Object and axis Picture Thin rod, about center | Cylinder or disk, about center MR ML2 Thin rod, about end ML Cylindrical hoop. MR2 about center | Solid sphere, about diameter Маг Plane or slab, about center Ma2 MR Plane or slab, about edge Ma2 Spherical shell, about diameter MR2 1. b. A very thin, straight, uniform rod has a length...

  • Results given on page 300: TABLE 12.2 Moments of inertia of objects with uniform density Object...

    Results given on page 300: TABLE 12.2 Moments of inertia of objects with uniform density Object and axis Picture Picture Object and axis Thin rod about center ML2 Cylinder or disk MR about center Thin rod about end ML Cylindrical hoop, MR2 about center Plane or slab, about center Маг | Solid sphere, about diameter MR2 Plane or slab about edge MaSpherical shell, about diameter MR2 2. b. A very thin, flat, uniform slab has a width of W, a...

  • What is the distance from axis about which a uniform, balsa-wood sphere will have the same...

    What is the distance from axis about which a uniform, balsa-wood sphere will have the same moment of inertia as does a thin-walled, hollow, lead sphere of the same mass and radius R, with the axis along a diameter, to the center of the balsa-wood sphere?

  • 1. Calculate the moments of inertia (about any axis through the center) for a spherical shell...

    1. Calculate the moments of inertia (about any axis through the center) for a spherical shell and a solid sphere. What is the ratio between the two moments of inertia. Both spherical shell and solid sphere have mass M, radius R, and uniform mass densities ( 0 and P respectively).

  • Use equation I=∫r2dm to calculate the moment of inertia of a uniform, hollow sphere with mass M and radius R for an axis...

    Use equation I=∫r2dm to calculate the moment of inertia of a uniform, hollow sphere with mass M and radius R for an axis passing through one of its diameters. Express your answer in terms of the variables M and R. Use equation I=∫r2dm to calculate the moment of inertia of a uniform, solid cone with mass M, radius R and height H for its axis of symmetry. Express your answer in terms of the variables M and R.

  • ​A hollow insulating spherical shell of inner radius R0 and outer radius R1 is positively charged with a charge density of p(r) = p0(1 – (r/R1)3).

    A hollow insulating spherical shell of inner radius R0 and outer radius R1 is positively charged with a charge density of p(r) = p0(1 – (r/R1)3). A positive charge +Q is placed in the center of the hollow sphere and a concentric grounded conducting shell with inner radius R2 and outer radius R3 surrounds the hollow sphere. (The conducting shell was neutral before it is grounded.) (a) What is the total charge on the insulating sphere? (b) What charges are on the...

  • A thin spherical shell with radius R1 = 4.00 cm is concentric with a larger thin...

    A thin spherical shell with radius R1 = 4.00 cm is concentric with a larger thin spherical shell with radius 6.00 cm . Both shells are made of insulating material. The smaller shell has charge q1=+6.00nC distributed uniformly over its surface, and the larger shell has charge q2=−9.00nC distributed uniformly over its surface. Take the electric potential to be zero at an infinite distance from both shells. a)What is the electric potential due to the two shells at the following...

  • Figure 27.33 shows a charge (+ q) on a uniform conducting hollow sphere of radius a...

    Figure 27.33 shows a charge (+ q) on a uniform conducting hollow sphere of radius a and placed at the center of a conducting spherical shell of inner radius b and outer radius c. The outer spherical shell carries a charge (- q). What is the charge on the outer surface (c) of the shell. Use Gauss' law to find E(r) at positions: within the conducting spherical (r < a); between the sphere and the shell (a<r< b); inside the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT