Question

Results given on page 300 TABLE 12.2 Moments of inertia of objects with uniform density Object and axis Picture Object and axis Picture Thin rod, about center MCylinder or disk, MR 2 about center Thin rod about end ML Cylindrical hoop, MR2 about center Plane or slab, about center Маг | Solid sphere, about RMR2 diameter Plane or slab, about edge 1Ma2 I spherical shell, about diameter MR2 5. Again, use the table of integration results on page 300 of the textbook to do the following: A sphere of mass M and outer radius R has a solid, uniform structure throughout, except for a hollow center. The radius of that central cavity is r (and of course, r<R). Find the moment of inertia of this structure about an axis through its center a. b. Looking now at your solution for part a, above, show that, as r approaches R, your solution approaches the expected result for a spherical shell, as shown on page 300. 1n-2

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Results given on page 300 TABLE 12.2 Moments of inertia of objects with uniform density Object...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Results given on page 300: TABLE 12.2 Moments of inertia of objects with uniform density Object...

    Results given on page 300: TABLE 12.2 Moments of inertia of objects with uniform density Object and axis Picture Object and axis Picture Thin rod about center Cylinder or disk, ML MR2 about center Thin rod about end ML Cylindrical hoop, MR2 about center Plane or slab, about center Solid sphere, about diameter 3MR2 Plane or slab, about edge Ma Spherical shell, about diameter MR2 4. Use the results on page 300 of the textbook to do the following: A...

  • Results given on page 300 TABLE 12.2 Moments of inertia of objects with uniform density Object...

    Results given on page 300 TABLE 12.2 Moments of inertia of objects with uniform density Object and axis Picture Object and axis Picture Thin rod, about center | Cylinder or disk, about center MR ML2 Thin rod, about end ML Cylindrical hoop. MR2 about center | Solid sphere, about diameter Маг Plane or slab, about center Ma2 MR Plane or slab, about edge Ma2 Spherical shell, about diameter MR2 1. b. A very thin, straight, uniform rod has a length...

  • Results given on page 300: TABLE 12.2 Moments of inertia of objects with uniform density Object...

    Results given on page 300: TABLE 12.2 Moments of inertia of objects with uniform density Object and axis Picture Picture Object and axis Thin rod about center ML2 Cylinder or disk MR about center Thin rod about end ML Cylindrical hoop, MR2 about center Plane or slab, about center Маг | Solid sphere, about diameter MR2 Plane or slab about edge MaSpherical shell, about diameter MR2 2. b. A very thin, flat, uniform slab has a width of W, a...

  • 5*) Find the angular velocity of the Earth due to its daily rotation and express it...

    5*) Find the angular velocity of the Earth due to its daily rotation and express it in radians per second. Then use it, and a model of the Earth as a solid sphere of mass M= 5.97 × 1024 kg and radius R = 6.37 × 106 m, to estimate the angular momentum of the Earth due to its rotation around its axis. (The result should be of the order of 1033 kg m2/s. This is called the Earth’s “intrinsic”...

  • n Given that the moment of inertia about a diameter of a uniform hollow thin spherical...

    n Given that the moment of inertia about a diameter of a uniform hollow thin spherical shell of mass m and radius r is jmr2. Show that the moment of inertia about a diameter of a non-uniform sphere of radius R with the volume mass density distribution given by por) (1-), where r denotes the radial distance from the center, is 1 MR2. (Hint: Imagine the sphere is made of infinitely many layers of 15M 8TtR3 very thin concentric spherical...

  • 10*) The Sun has approximate radius 7×108 m, and rotates around its axis once every 27...

    10*) The Sun has approximate radius 7×108 m, and rotates around its axis once every 27 days. a) Find its angular velocity in rad/s, and (assuming it is a uniform sphere) write a formula for its angular momentum expressing it in terms of its mass M (you do not need to substitute a value for M). b) Suppose the Sun were to collapse to a neutron star, which is a much denser state, without losing any mass and without being...

  • 1. Calculate the moments of inertia (about any axis through the center) for a spherical shell...

    1. Calculate the moments of inertia (about any axis through the center) for a spherical shell and a solid sphere. What is the ratio between the two moments of inertia. Both spherical shell and solid sphere have mass M, radius R, and uniform mass densities ( 0 and P respectively).

  • An object is formed by attaching a uniform, thin rod with a mass of mr =...

    An object is formed by attaching a uniform, thin rod with a mass of mr = 7.31 kg and length L = 5.68 m to a uniform sphere with mass ms = 36.55 kg and radius R = 1.42 m. Note ms = 5mr and L = 4R. *What is the moment of inertia of the object about an axis at the left end of the rod? *If the object is fixed at the left end of the rod, what...

  • Consider a system containing a solid cylinder of mass 10 kg and diameter 0.5 m, a...

    Consider a system containing a solid cylinder of mass 10 kg and diameter 0.5 m, a thin cylindrical shell of mass 2 kg and diameter 0.3 m, and a tbin spherical shell of mass 5 kg and radius 0.25 m arranged as shown in the image anove and all connected by a massless thin rod. The center of each object is 1 m apart in the system is free to rotate about an access 1 m to the left of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT