Question

ki m2 pin miThe unforced, two-DOF figure shown has two masses. One is fixed at the end of a rigid, massless rod, acting as pendulum which can swing about the point where it is pinned. The system is at equilibrium when the pendulum hangs straight down, with ф and x equal to 0. We may assume that ф remains small.

In terms of the given mass, damping, and stiffness parameters and the lengths shown:

a) Find the equations of motion of the two masses.

b) Put the equations into matrix form and clearly label the [m], [c], and [k] matrices, assuming that the state vector is \binom{ф}{x}(xф​).

0 0
Add a comment Improve this question Transcribed image text
Answer #1

II M vmwm 12 p pin fBD of mass m2 m, i kaze Fs ce K(20-40% {furo - mere & cie + K (2-2,8) + 12 20 =0 => mgüe +exe +(85 +132e

Please RATE my answer

Thank you

Add a comment
Know the answer?
Add Answer to:
The unforced, two-DOF figure shown has two masses. One is fixed at the end of a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problen /) Derive equations of motion of the system shown below in x and 0 by using Lagrange's method. The thin rigid rod of length is supported as a pendulum at end A, and has a mass m. The rod...

    Problen /) Derive equations of motion of the system shown below in x and 0 by using Lagrange's method. The thin rigid rod of length is supported as a pendulum at end A, and has a mass m. The rod is also pinned to a roller and held in place by two elastic springs with constants k . Problen /) Derive equations of motion of the system shown below in x and 0 by using Lagrange's method. The thin rigid...

  • 3. Consider the spring - mass system shown below, consisting of two masses mi and m2 sus- pended ...

    3. Consider the spring - mass system shown below, consisting of two masses mi and m2 sus- pended from springs with spring constants ki and k2, respectively. Assume that there is no damping in the system. a) Show that the displacements ai and r2 of the masses from their respective equilibrium positions satisfy the differential equations b) Use the above result to show that the spring-mass system satisfies the following fourth order differential equation and c) Find the general solution...

  • 3. Consider the spring - mass system shown below, consisting of two masses mi and ma sus- pended ...

    3. Consider the spring - mass system shown below, consisting of two masses mi and ma sus- pended from springs with spring constants ki and k, respectively. Assume that there is no damping in the system. a) Show that the displacements z1 and 2 of the masses from their respective equilibrium positions satisfy the differential equations b) Use the above resuit to show that the spring-mass system satisfies the following fourth order differential equation. and ) Find the general solution...

  • 3.10 (Motor drive) Consider a system consisting of a motor driving two masses that are connected...

    3.10 (Motor drive) Consider a system consisting of a motor driving two masses that are connected by a torsional spring, as shown in the diagram below. Motor This system can represent a motor with a flexible shaft that drives a load. Assuming that the motor delivers a torque that is proportional to the current I, the dynamics of the system can be described by the equations dt dt (3.43) dtdt where Ф1 and P2 are the angles of the two...

  • Homework 8: Modal and Direct Solution Approaches Figure 1 shows a system with two masses. The two...

    Homework 8: Modal and Direct Solution Approaches Figure 1 shows a system with two masses. The two coordinates of which the origins are set up at the unstretched spring positions are also shown in Fig. 1. The system is excited by the force f(t) 1. (a) Draw the FBDs for the system and show that the EOMs can be written as (b) Find the undamped, natural frequencies and the corresponding mode shapes of the system for the given system parameters...

  • A rigid, massless rod has three particles with equal masses attached to it as shown in Figure P8.59.

    A rigid, massless rod has three particles with equal masses attached to it as shown in Figure P8.59. The rod is free to rotate in a vertical plane about a friction-less axle perpendicular to the rod through the point Pand is released from rest in the horizontal position at t - 0. Assuming m and d are known, find (a) the moment of inertia of the system (rod plus particles) about the pivot, (b) the torque acting on the system...

  • Figure 2 The massless rod in Fig. 2 has two masses on it, one mass mı...

    Figure 2 The massless rod in Fig. 2 has two masses on it, one mass mı is fixed at the end, while the other m2, is constrained to move along the radius by a linear spring k. Derive the equations of motion for the system using D'Alembert's principles. Note there is no friction 1. Draw the free body diagram of each mass. 2. Determine the virtual displacement of each mass in terms of r and θ 3. Determine all applied...

  • Homework 7: Undamped, 2-DOF System 1. A system with two masses of which the origins are...

    Homework 7: Undamped, 2-DOF System 1. A system with two masses of which the origins are at the SEPs is shown in Figure 1. The mass of m2 is acted by the external force of f(t). Assume that the cable between the two springs, k2 and k3 is not stretchable. Solve the following problems (a) Draw free-body diagrams for the two masses and derive their EOMs (b) Represent the EOMs in a matrix fornm (c) Find the undamped, natural frequencies...

  • 4. Two objects of masses m/ and m2 are connected by a massless spring as shown...

    4. Two objects of masses m/ and m2 are connected by a massless spring as shown in the figure below. The spring has a natural length of L and a stiffness of k. Owo a. If x is the extension of the spring by the horizontal motion of the masses, use Newton's second law to determine the equations of motion for each object. b. Combine these equations to show that the system oscillates at a frequency of - mįm2 w2...

  • Problem 1: The system in Figure 1 comprises two masses connected to one another through a...

    Problem 1: The system in Figure 1 comprises two masses connected to one another through a spring. The block slides without friction on the support and has mass mi. The disk has radius a, mass moment of inertia I, and mass m2. The disk rolls without slipping on the support. The springs are unstretched when x(t) = x2(t) = 0. 2k 3k , m Figure 1: System for Problem 1 (a) Derive the differential equations of motion for the system...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT