Question

When a 4.00 kg object is placed on top of a vertic


solve

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Apply Hooke's law

The the weight of the object is equal to elastic potential energy of spring

F = kx = mg

Substitute given values

k ( 0.0217 m ) = (4.0 kg ) ( 9.8 )

Solve for k

k = 1806.45 N/m

Add a comment
Know the answer?
Add Answer to:
solve When a 4.00 kg object is placed on top of a vertical spring, the spring...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 0.500-kg object is connected to a horizontal massless spring. The spring is initially stretched by...

    A 0.500-kg object is connected to a horizontal massless spring. The spring is initially stretched by 0.200 m and the object is released from rest there. It proceeds to move without friction. The next time the speed of the object is zero is 0.500 s later. Determine the maximum speed of the object, the spring constant, and the mechanical energy of the system. Determine potential energy of the object when it’s speed is a third of the maximum speed.

  • An object with a mass m = 4.00 kg is attached to the end of a...

    An object with a mass m = 4.00 kg is attached to the end of a spring, and the spring is stretched an amount x; = 4.60 cm and then released. If the force constant for the spring is k = 520 N/m, determine the speed of the mass as it passes through the equilibrium position the first time for the following two cases. (a) The horizontal surface the object is sliding along is frictionless. m/s (b) The coefficient of...

  • A 1.30-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal...

    A 1.30-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 21.0 N is required to hold the object at rest when it is pulled 0.200m from its equilibrium position...... Would you write out the intermediate steps, too, please? A 1.30-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 21.0 N is required to hold the object at rest when it is pulled 0.200 m...

  • A 3.70 kg object is attached to a spring and placed on frictionless, horizontal surface. A...

    A 3.70 kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 19.0 N is required to hold the object at rest when it is pulled 0.200 m from its equilibrium position (the origin of the x axis). The object is now released from rest from this stretched position, and it subsequently undergoes simple harmonic oscillations (a) Find the force constant of the spring, N/m (b) Find the frequency of the oscillations Hz...

  • A 1.1-kg object is suspended from a vertical spring whose spring constant is 180 N/m. (a)...

    A 1.1-kg object is suspended from a vertical spring whose spring constant is 180 N/m. (a) Find the amount by which the spring is stretched from its unstrained length. (b) The object is then pulled straight down by an additional distance of 0.12 m and released from rest. Find the speed with which the object passes through its original position on the way up. X 10.791 (a) Number Units (b) Number 1.5 Units m/s

  • A 1.1-kg object is suspended from a vertical spring whose spring constant is 180 N/m. (a)...

    A 1.1-kg object is suspended from a vertical spring whose spring constant is 180 N/m. (a) Find the amount by which the spring is stretched from its unstrained length. (b) The object is then pulled straight down by an additional distance of 0.14 m and released from rest. Find the speed with which the object passes through its original position on the way up. (a) Number 0.05988 Units m 2.556 (b) Number Units m/s LINK TO TEXT

  • A 1.1-kg object is suspended from a vertical spring whose spring constant is 170 N/m. (a)...

    A 1.1-kg object is suspended from a vertical spring whose spring constant is 170 N/m. (a) Find the amount by which the spring is stretched from its unstrained length. (b) The object is then pulled straight down by an additional distance of 0.10 m and released from rest. Find the speed with which the object passes through its original position on the way up.

  • A 1.1-kg object is suspended from a vertical spring whose spring constant is 190 N/m. (a)...

    A 1.1-kg object is suspended from a vertical spring whose spring constant is 190 N/m. (a) Find the amount by which the spring is stretched from its unstrained length. (b) The object is then pulled straight down by an additional distance of 0.22 m and released from rest. Find the speed with which the object passes through its original position on the way up.

  • A 1.4-kg object is suspended from a vertical spring whose spring constant is 131 N/m. (a)...

    A 1.4-kg object is suspended from a vertical spring whose spring constant is 131 N/m. (a) Find the amount by which the spring is stretched from its unstrained length. m (b) The object is pulled straight down by an additional distance of 0.16 m and released from rest. Find the speed with which the object passes through its original position on the way up.

  • A 3.10 kg fish is attached to the lower end of a vertical spring that has...

    A 3.10 kg fish is attached to the lower end of a vertical spring that has negligible mass and force constant 850 N/m . The spring initially is neither stretched nor compressed. The fish is released from rest. a)What is its speed after it has descended 0.0460 m from its initial position? b)What is the maximum speed of the fish as it descends?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT