Question

4) A gas contained within a piston-cylinder assembly undergoes four processes in series: Process 1-2. Expansion with Pr= constant, P,-3 bar, p, = 0.2 m, P2-2 bar, U-U-200 kJ. Process 2-3: Constant volume cooling of the gas to 1 bar, with Us 100 kJ. Process 4-1: Expansion with PV constant. a) Evaluate V2 and V4, each in m3 b) Sketch the processes in series on a P-V diagram labeled with pressures and volumes at each numbered state c) Evaluate the work and heat transfer for each process, in kJ. For each process, state the direction of energy transfer by work and heat (into or out of the system). d) Determine the net work and the net heat transfer during all four processes

please help me with this problem!

0 0
Add a comment Improve this question Transcribed image text
Answer #1

yoien 1-2 V] 2. 2. 04% 24(55K 0.2 o 718 0-71 135.20r229.99-K 225 LT (00-07)xo) 22 0. 3 2 2- 0 3 (40,-,-ew),-1 = 24.32街 4-t

Add a comment
Know the answer?
Add Answer to:
please help me with this problem! 4) A gas contained within a piston-cylinder assembly undergoes four...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A gas contained within a piston-cylinder assembly undergoes two processes

    A gas contained within a piston-cylinder assembly undergoes two processes, A and B, between the same end states, 1 and 2, where p1=10 bar, V1= 0.1 m3, U1=400 kJ and p2=1 bar, V2=1.0 m3, U2=200 kJ: Process A. Process from 1 to 2 during which the pressure-volume relation is p.V = constant. Process B: Constant-volume process from state 1 to a pressure of 2 bar, followed by a linear pressure-volume process to state 2 Kinetic and potential energy effects can be ignored. For...

  • As shown in the figure below, a gas contained within a piston-cylinder assembly, initially at a...

    As shown in the figure below, a gas contained within a piston-cylinder assembly, initially at a volume of 0.1 m3, undergoes a constant-pressure expansion at p 2 bar to a final volume of V2 0.2 m3, while being slowly heated through the base. The change in internal energy of the gas is 0.25 kJ. The piston and cylinder walls are fabricated from heat-resistant material, and the piston moves smoothly in the cylinder. The local atmospheric pressure is 1 bar. Piston-...

  • Problem 2. As shown in the figure, a gas contained within a piston-cylinder assembly, initially at...

    Problem 2. As shown in the figure, a gas contained within a piston-cylinder assembly, initially at a volume of 0.1 m3, undergoes a constant-pressure expansion at 2 bar to a final volume of 0.12 m3, while being slowly heated through the base. The change in internal energy of the gas is 0.25 kJ. The piston and cylinder walls are fabricated fronm heat-resistant material, and the piston moves smoothly in the cylinder. The local atmospheric pressure is 1 bar. (a) For...

  • 1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure...

    1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure of 5.1 bar to a pressure of 2.7 bar. Evaluate the work, in kJ/kg. 2.Nitrogen (N2) contained in a piston–cylinder arrangement, initially at 9.3 bar and 437 K, undergoes an expansion to a final temperature of 300 K, during which the pressure–volume relationship is pV1.1 = constant. Assuming the ideal gas model for the N2, determine the heat transfer in kJ/kg. 3.Argon contained in...

  • QUESTION 7 A piston-cylinder assembly contains 6kg of water that undergoes a series of processes to...

    QUESTION 7 A piston-cylinder assembly contains 6kg of water that undergoes a series of processes to form a thermodynamic cycle. Process 1->2: Constant volume cooling from P:-3.0bar to p1.5bar and X-0.728 to Process 2-->3: Constant pressure expansion Process 3-1: Polytropic compression with pv2 constant to the initial state Kinetic and potential energy effects are negligible. To help organize given information and fix states 1 and 3, consider sketching a Pv diagram Evaluate the net heat transfer for the cycle in...

  • A gas undergoes a cycle in a piston-cylinder assembly consisting of the following three processes:

    A gas undergoes a cycle in a piston-cylinder assembly consisting of the following three processes:Process 1-2: Constant pressure, p=1.4 bar, v₁=0.028 m³, w12=10 kJProcess 2-3: Compression with p V= constant, U₃=U₂Process 3-1: Constant volume, U₁-U₃=-25 kJThere are no significant changes in kinetic or potential energy.(a) Calculate the net work for the cycle, in kJ.(b) Calculate the heat transfer for process 1-2, in kJ.

  • A piston-cylinder assembly contains air modeled as an ideal gas. The air undergoes a power cycle...

    A piston-cylinder assembly contains air modeled as an ideal gas. The air undergoes a power cycle consisting of four processes in series: • Process 1-2: Constant-temperature expansion at 600 K from p1 = 0.5 MPa to p2 = 0.4 MPa. • Process 2-3: Polytropic expansion with n = 1.3 to p3 = 0.3 MPa. • Process 3-4: Constant-pressure compression to ν4 = ν1. • Process 4-1: Constant-volume heating. a) Sketch the cycle on a p-ν diagram. b) Calculate the work...

  • A piston-cylinder assembly contains air modeled as an ideal gas with a constant specific heat ratio,...

    A piston-cylinder assembly contains air modeled as an ideal gas with a constant specific heat ratio, k = 1.4. The air undergoes a power cycle consisting of four processes in series: Process 1-2: Constant-temperature expansion at 600 K from p1 = 0.5 MPa to p2 = 0.4 MPa. Process 2-3: Polutropic expansion with n = k to p3 = 0.3 MPa. Process 3-4: Constant-pressure compression to V4 = V1. Process 4-1: Constant volume heating. Sketch the cycle on a p-v...

  • PROBLEM-4 (50%) One kg of air is in a piston-cylinder assembly. Air is modeled as an...

    PROBLEM-4 (50%) One kg of air is in a piston-cylinder assembly. Air is modeled as an ideal gas with a constant specific heat ratio, k = 1.4. The air undergoes a power cycle consisting of four processes in series: Process 1-2: Constant-temperature expansion at 600 K from P1 = 0.5 MPa to P2 = 0.4 MPa Process 2–3: Polytropic expansion with n=k to P3 = 0.3 MPa Process 3–4: Constant-pressure compression to V4 = V1 Process 4–1: Constant-volume heating. (a)...

  • One kg of air in a piston-cylinder assembly undergoes two processes in series from an initial...

    One kg of air in a piston-cylinder assembly undergoes two processes in series from an initial state where p1 = 0.5 MPa, T1 = 227oC. Process 1-2: Constant-temperature expansion until the volume is twice the initial volume. Process 2-3: Constant-volume heating until the pressure is again 0.5 MPa. Sketch the two processes in series on a p-v diagram. Assuming ideal gas behavior, determine (a) the pressure at state 2, in MPa, (b) the temperature at state 3, in oC, and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT