Question

6. (a) Calculate the moment of inertia about the center of mass. (b) Calculate h, the moment of inertia about an axis through
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Moment of inertial abut cntof reass ImAmA I: 2mA about B m(2A T ma 2 a2 C about C moment netial 2 MAl2ma T = ma kinehc eu e a

Add a comment
Know the answer?
Add Answer to:
6. (a) Calculate the moment of inertia about the center of mass. (b) Calculate h, the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Calculate the moment of inertia of the following figure about the axis O. A is a...

    Calculate the moment of inertia of the following figure about the axis O. A is a uniform solid cylinder with mass M and radius R. B is a uniform thin rod with mass M and length 3R. A and B objects are attached together and rotate together about axis O. The distance X is  and Y is  in the figure. The light blue line is going through the center of the cylinder and the point “CM” represents the center of mass of...

  • The moment of inertia of the human body about an axis through its center of mass is important in the application of bio...

    The moment of inertia of the human body about an axis through its center of mass is important in the application of biomechanics to sports such as diving and gymnastics. We can measure the body's moment of inertia in a particular position while a person remains in that position on a horizontal turntable, with the bodys center of mass on the turntable's rotational axis. The turntable with the person on it is then accelerated from rest by a torque that...

  • What is the moment of inertia of the object about an axis at the center of...

    What is the moment of inertia of the object about an axis at the center of mass of the object? (Note: the center of mass can be calculated to be located at a point halfway between the center of the sphere and the left edge of the sphere.)

  • Moment of Inertia

    Four small spheres, each of which can be regarded as a point mass of 0.200 kg, are arranged in a square 0.400 m and connected by extremely light rods. Find the moment of inertia of the system about an axisa) through the center of the square O, perpendicular to the plane of the squareb) bisecting two opposite sides of the square (line A-B in the figure)c) passing through O along a diagonal of the squared) Suppose the masses of the...

  • In the figure a stone of mass 14 kg has a moment of inertia of 2.4...

    In the figure a stone of mass 14 kg has a moment of inertia of 2.4 kg . m^2 about an axis A which is parallel to an axis through the center of mass. Axis A is .20 m from the center of mass axis. with the help of the parallel axis thm: determine the moment of inertia about the center of mass axis.

  • A 1.0 kg mass is located at the origin of the (?, ?) plane, another 1.0...

    A 1.0 kg mass is located at the origin of the (?, ?) plane, another 1.0 kg mass is located at the point (0.12, 0), and a 2.0 kg mass is located at the point (0.06, 0.08), where the (?, ?) coordinates are given in meters. The three masses are fixed relative to each other by massless rods. a) Find the moment of inertia of this object about an object perpendicular to the (?, ?) plane & passing through the...

  • This is the diagram that was provided. 3. It can be shown that the rotational inertia (moment of inertia) for a uniform...

    This is the diagram that was provided. 3. It can be shown that the rotational inertia (moment of inertia) for a uniform rod about an axis that's perpendicular to the rod and passes through one of its ends is: Where M is the rod's total mass and L is its total length. (a) (10 points) Use the Parallel Axis Theorem to find the moment of inertia of a uniform rod about an axis that's perpendicular to the rod and passes...

  • u Review Part B - Calculate the moment of inertia Learning Goal: To find the centroid...

    u Review Part B - Calculate the moment of inertia Learning Goal: To find the centroid and moment of inertia of an I-beam's cross section, and to use the flexure formula to find the stress at a point on the cross section due to an internal bending moment. Once the position of the centroid is known, the moment of inertia can be calculated. What is the moment of inertia of the section for bending around the z-axis? Express your answer...

  • A flywheel having radius of gyration 2 m and mass 10 kg rotates at angular speed...

    A flywheel having radius of gyration 2 m and mass 10 kg rotates at angular speed of 5 radians/s about an axis perpendicular to it through its center. Find (a) The moment of inertia. (b) The angular momentum of the flywheel. (c) The kinetic energy of rotation. 4. A flywheel having radius of gyration 2 m and mass 10 kg rotates at angular speed of 5 radians/s about an axis perpendicular to it through its center. Find (a) The moment...

  • Need help with the following questions 1. Two point masses a mass a-6 Kg mass and...

    Need help with the following questions 1. Two point masses a mass a-6 Kg mass and mass b- 7 kg mass are located L- 5 meters apart. Calculate the moment of inertia about Axis b. (image not to scale) Axis a Axis b mg nNg 2. Two point masses a 6 Kg mass and an 18 kg mass are connected by a mass less rod 6 meters long. Calculate the distance of the center of mass from the 18 kg...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT