Question
Hello! these are physical chemisty questions. I answered them incorrectly. Thank you for your help!
The following applies to questions 17-21. Consider 1.00 mol of an ideal gas (Cp -5/2 R) initially at 1.00 atm that undergoes
The following applies to question 12-16. Consider 1.00 mol of an ideal gas (CV-3/2 R) occupying 22.4 L that undergoes an isoc
QUESTION 7 The following applies to questions 7-11. Consider 1.00 mol of an ideal gas expanding reversibly and isothermally a
Use the following data (Huff, Squitieri, and Snyder, J. Am. Chem. Soc., 70, 3380 (1948)] to calculate the standard enthalpy o
The following applies to questions 21-26. Consider 1.00 mol of an ideal gas (Cp = 5/2 R, CV = 3/2 R) initially at 1.00 atm th
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Constant pressure process (Isobaric): number of moles, n = 1 mol Pressure, P = 1.0 atm initi al volume, V1 = 12.2L final volu

Add a comment
Know the answer?
Add Answer to:
Hello! these are physical chemisty questions. I answered them incorrectly. Thank you for your help! The...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1.2 Consider an isobaric compression of 0.450 mol of an ideal gas from 22.4 L and...

    1.2 Consider an isobaric compression of 0.450 mol of an ideal gas from 22.4 L and 1.00 atm to 10.5 L. Given that Cp for the gas is R = 5/2 R, calculate AT, 9, W AU and AH. (11)

  • Please help and show work. Thanks! (3). A sample of 1.00 mol ideal gas molecules with...

    Please help and show work. Thanks! (3). A sample of 1.00 mol ideal gas molecules with Cp, m = 7/2 R is initially at p = 1.00 bar and V = 22.44 L and then put thought the following cycle in reversible processes: (a) constant-pressure expansion to twice its initial volume, (b) constant-volume cooling to its initial temperature, (c) isothermal-compression back to 1.00 bar. Calculate q, w, AU, AH, AS for each process and for the whole cycle. (20 pts)

  • For a certain perfect gas, CV,m = 2.5R at all temperatures. Calculate q, w, ?U, ?H,...

    For a certain perfect gas, CV,m = 2.5R at all temperatures. Calculate q, w, ?U, ?H, and ?S when 2.00 mol of this gas undergoes each of the following processes: (a) a reversible isobaric expansion (1.00 atm, 20.0 L) to (1.00 atm, 40.0 L). (b) A reversible isothermal compression from (0.500 atm, 40.0 L) to (1.00 atm, 20.0 L).

  • please do all the questions below with proper working steps. Initially, the volume and pressure of 0.1 mol...

    please do all the questions below with proper working steps. Initially, the volume and pressure of 0.1 mol of methane gas are 2.90 L (b) and 1 atm, respectively. The gas is allowed to expand adiabatically and reversibly to a pressure of 0.1 atm. Assume that the gas behaves ideally and the value of Cp/Cv is 1.31. (i) What is the final temperature of the gas? (ii) Calculate q, w, AU and AH in joule () for the process. (ii)...

  • The lesson is about First Law of Thermodynamic. The problems have answers but i need solutions....

    The lesson is about First Law of Thermodynamic. The problems have answers but i need solutions. PLEASE HELP ME! THANK YOU! 38. Calculate the maximum work that could be obtained if 2.00 mol of an ideal gas, initially at STP, is allowed to expand to 100 L isothermally. Answer-36.0 L-atm 39. If 5.00 mol of an ideal gas is heated at constant pressure from 300 K to 500 K, how much work is done by the expansion of the gas?...

  • Please answer the following question completely and correctly. Please show all work and write neatly. 3....

    Please answer the following question completely and correctly. Please show all work and write neatly. 3. A sample of 1.00 mol ideal gas molecules with Cp, m = 7/2 R is initially at p = 1.00 bar and V = 22.44 L and then put thought the following cycle in reversible processes: (a) constant-pressure expansion to twice its initial volume, (b) constant-volume cooling to its initial temperature, (c) isothermal-compression back to 1.00 bar. Calculate q, w, AU, AH, AS for...

  • 1. A crackpot inventor designs the following heat engine. (An annotated PV plot might help.) Step...

    1. A crackpot inventor designs the following heat engine. (An annotated PV plot might help.) Step D: Starting at State A (PA, VA, and TA25.0 °C), the gas undergoes a reversible and isothermal expansion until it reaches State B (PB = 1.000 atm, VB, and TB). Step : A dry ice / acetone bath is used to isochorically bring the gas to State C (Pc, Vc, and Tc -78.5 °C) Step : The gas undergoes a reversible adiabatic compression until...

  • (3). A sample of 1.00 mol ideal gas molecules with Com= 7/2 R is initially at...

    (3). A sample of 1.00 mol ideal gas molecules with Com= 7/2 R is initially at p = 1.00 bar and V = 22.44 L and then put thought the following cycle in reversible processes: (a) constant-pressure expansion to twice its initial volume, (b) constant volume cooling to its initial temperature, (c) isothermal-compression back to 1.00 bar. Calculate q, w, AU, AH, AS for each process and for the whole cycle. (20 pts)

  • A sample of 1.00 mol ideal gas molecules with Cpm 7/2 R is initially at p 1.00 bar and V 22.44 L and then put tho...

    A sample of 1.00 mol ideal gas molecules with Cpm 7/2 R is initially at p 1.00 bar and V 22.44 L and then put thought the following cycle in reversible processes: (a) constant-pressure expansion to twice its initial volume, (b) constant-volume cooling to its initial temperature, (c) isothermal-compression back to 1.00 bar. Calculate q, w, AU, AH, AS for each process and for the whole cycle. (20 pts)

  • Please help with these two questions 1.) Consider the reaction between hydrogen gas and oxygen gas...

    Please help with these two questions 1.) Consider the reaction between hydrogen gas and oxygen gas to form water: 2 H2(g) + O2(g) → 2 H2O(g). How many grams of water could be produced by the reaction of 4.28 liters of hydrogen with 4.11 liters of oxygen at STP? 2.) Automobile airbags use the decomposition of sodium azide, NaN3, to provide gas for rapid inflation: 2 NaN3(s) → 2 Na(s) + 3 N2(g). Using stoichiometry and the ideal gas law,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT