Question

Consider the following differential equation which describes a spring-mass-damper system më + ci + kx = cos(2nt) where c 1.9
0 0
Add a comment Improve this question Transcribed image text
Answer #1

For given second order differential equation, for the 1st part, when we took m=0, the equation turn out to be 1st order d.e. and solved it using RK4 method using given initial condition and step size.

For part 2, for m=1 , this is 2nd order differential equation , euler method is used and 3 iterations are done using initial condition and step size.

+-0-0 1-0-2 + 0.3 = 1 for mal, ä + cai +km = + cos/eat) Isilo)= o hoool xlozo 1 ai (0:2) ? ä 10.3) ? du tk x = coslent atat e22= zit feld,st, 2) h = 0.1 + fc (0, 0.1, 0.1) 0.1 9 11 0.1 + l cos. (2 Axo. 2) - [0.6192)x011 + Za 0.1619 (012) 5011619 ΟΥ 1

Add a comment
Know the answer?
Add Answer to:
Consider the following differential equation which describes a spring-mass-damper system më + ci + kx =...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (4) Consider the 2nd order equation for a mass-spring-damper system, mx'' + bx' + kx =...

    (4) Consider the 2nd order equation for a mass-spring-damper system, mx'' + bx' + kx = f(t) a) Assuming f(t) is a step function, find the Laplacian transform, X(s) (include terms for the initial conditions xo, vo). b) Assume m = 1, b = 5, and k = 6, and x(0) = 3, x’(0) = 0. Find the time-domain solution (take the inverse transform). (5)Find the Laplace transform of y(t) from the differential equation, assuming u(t) is a step function....

  • The dynamics of a spring-damper-mass system is defined by the following differential equation, č + 4€...

    The dynamics of a spring-damper-mass system is defined by the following differential equation, č + 4€ + 5x = f(t),x(0) = 1, *(0) = 2, where f(t) is a step input with magnitude of 10, i.e. f(t)=10-1(t). Find the solution x(t) of the differential equation using Laplace transformation method.

  • 3. The motion of a 1DOF mass-spring-damper system (see Figure 1) is modeled by the following seco...

    3. The motion of a 1DOF mass-spring-damper system (see Figure 1) is modeled by the following second order linear ODE: dx,2 dt n dt2 (0) C dt where is the damping ratio an wn is the natural frequency, both related to k, b, and m (the spring constant, damping coefficient, and mass, respectively) (a) Use the forward difference approximations of (b) Using Δt andd to obtain a finite difference formula for x(t+ 2Δ) (like we did in class for the...

  • Consider the following initial value problem у(0) — 0. у%3D х+ у, (i) Solve the differential equation above in tabul...

    Consider the following initial value problem у(0) — 0. у%3D х+ у, (i) Solve the differential equation above in tabular form with h= 0.2 to approximate the solution at x=1 by using Euler's method. Give your answer accurate to 4 decimal places. Given the exact solution of the differential equation above is y= e-x-1. Calculate (ii) all the error and percentage of relative error between the exact and the approximate y values for each of values in (i) 0.2 0.4...

  • Problem Set A Problem 6. (20%) A ordinary differential equation for a mass-damper-spring system is following....

    Problem Set A Problem 6. (20%) A ordinary differential equation for a mass-damper-spring system is following. The mass m 1, damping coetfic e initial position y(o) O, and the initial velocity i constant k 3 and force 10, all are in appropriate units. Th 1, spring zero, within the time range of O to 20 unit of time, use Matlab find the solution of function y(t)? Hint: you need to convert the 2nd order ODE into two 1st order ODEs....

  • 3. (a) Express the following ordinary differential equation and initial conditions as an autonomous system of...

    3. (a) Express the following ordinary differential equation and initial conditions as an autonomous system of first order equations: 2"-223z = 2, '(0)= 1 z(0) 0, (b) Consider the following second order explicit Runge-Kutta scheme written in au- tonomous vector form (y' = f(y)): hf (ynk kihf (yn), k2 yn+1 ynk2. IT Use the second order explicit Runge-Kutta scheme with steplength h compute approximations to z(0.1) and z'(0.1) 0.1 to _ 3. (a) Express the following ordinary differential equation and...

  • Spring mass damper system with forced response, the forced system given by the equation For damping...

    Spring mass damper system with forced response, the forced system given by the equation For damping factor:E-0.1 ; mass; m-| kg: stiffness of spring; k-100 Nm; f-| 00 N; ω Zun; initial condition: x (0)-2 cms; r(0) = 0. fsincot Task Marks 1. Write down the reduced equation into 2first orderns Hand written equations differential equations 2. Rearrange equation (1) with the following generalized equation 250, x+osinor calculations 3. Calculate the value of c calculations Hand calculations 4. Using the...

  • A system of two first order differential equations can be written as: A second order explicit R...

    A system of two first order differential equations can be written as: A second order explicit Runge-Kutta scheme for the system of two first order equations is Consider the following second order differential equation: Use the Runge-kutta scheme to find an approximate solution of the second order differential equation, at x = 0.2, if the step size h = 0.1. Maintain at least eight decimal digit accuracy throughout all your calculations. You may express your answer as a five decimal...

  • For the system shown below, a 20Kg mass is sitting on a spring-damper system on a foundation. The system is operating a...

    For the system shown below, a 20Kg mass is sitting on a spring-damper system on a foundation. The system is operating at a frequency of 20 rad/s with only one unbalanced mass, m. For the maximum transmissibility at (=0.2, use the chart provided below to determine the suitable values for the spring and the damper constants If a second mass is added to the system (m2=m) at an angle 90 degrees behind the first mass, What is the maximum force...

  • Consider a mass-spring-damper system whose motion is described by the following system of differe...

    Consider a mass-spring-damper system whose motion is described by the following system of differentiat equations [c1(f-k)+k,(f-х)-c2(x-9), f=f(t), y:' y(t) with x=x( t), where the function fit) is the input displacement function (known), while xit) and yt) are the two generalized coordinates (both unknown) of the mass-spring-damper systenm. 1. Identify the type of equations (e.g. H/NH, ODE/PDE, L/NL, order, type of coefficients, etc.J. 2. Express this system of differential equations in matrix form, assume f 0 and then determine its general...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT