Question

Background In this lab, we will have a mass attached to a string that hangs over a (massless, frictionless) pulley. The other

There are two graphs that needs to be made in this lab:

1. Total Energy Vs time with m = 20g

2. Total Energy Vs time with m = 40g

A) Explain the nature of the plots .(Linear or non linear?) The expected slope is zero in both cases. Why? Explain with the use of law of conservation of energy. What is the significance of the intercept?

B) Suppose you drew the Kinetic Energy Vs potential Energy graph: The expected slope would be -1. Why? Explain with the use of law of conservation of energy. What is the significance of the intercept?

C) Suppose you drew the Velocity Vs time graph. What would be the slope? Why? (it may help to solve for the acceleration of the system) --> Hint: a = (mg)/(M+m).

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution : a total I the total energy will remain. same becauce to as the mass. Come clown the potential energy will be convethe Velocity will encrease with time and slope as equal tre acceleration a a = mg [M7m] acceleration is rate of change of os

Add a comment
Know the answer?
Add Answer to:
There are two graphs that needs to be made in this lab: 1. Total Energy Vs...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • We did a lab where we leveled a horizontal track and used a massless frictionless pulley...

    We did a lab where we leveled a horizontal track and used a massless frictionless pulley system with a weight to pull a cart and measured the potential vs kinetic energy of the closed system to find a slope of -1 when graphed. Why is leveling the track so important? How and why would your results be affected if the track were not level? If we did the experiment again and at the time that the cart is being pulled...

  • Conservation of energy In the examples you have examined in this lab, as the coaster travels...

    Conservation of energy In the examples you have examined in this lab, as the coaster travels down the track its gravitational potential energy decreases, and its kinetic energy increases. At any point along the path of the coaster, the potential energy plus the kinetic energy add up to the same value. In the absence of friction and air resistance, we find that the total energy (kinetic plus potential) stays the same. For this reason, physicists call the total energy a...

  • The sum of the forces on an object is directly proportional to the mass of the...

    The sum of the forces on an object is directly proportional to the mass of the object and directly proportional to the acceleration of the object. The second law is expressed by the equation: (1) F=ma If the mass is in kg and the acceleration in m/s2, then the force is in Newtons. In (1), F is the net applied force, m is the mass of the object on which the force is applied, and a is the acceleration of...

  • Prelab 1: Consider the following system consisting of a falling mass m attached by a thread...

    Prelab 1: Consider the following system consisting of a falling mass m attached by a thread to a pulley of radius r and disk/platter of rotational inertiaI. As the mass falls, the thread unwinds and spins up the platter 17 The system considered above can be used to determine the rotational inertia () of the platter and pulley Sketch the force diagram for the falling mass (m) and write the equation of motion for the mass that involves the tension...

  • please explain and write neatly 1. Once again we have a skier on an inclined plane....

    please explain and write neatly 1. Once again we have a skier on an inclined plane. The skier has mass M and starts from rest. Her speed at the bottom of the slope is 12.0 meters/second. The hill is inclined 30 degrees from the horizontal and the length of the slope is 100.0 meters. Use the law of conservation of energy to determine her final speed and write that number down here: What could account for the difference in your...

  • Prelab 1: Consider the following system consisting of a falling mass m attached by a thread...

    Prelab 1: Consider the following system consisting of a falling mass m attached by a thread to a pulley of radius r and disk/platter of rotational inertiaI. As the mass falls, the thread unwinds and spins up the platter 17 The system considered above can be used to determine the rotational inertia () of the platter and pulley Sketch the force diagram for the falling mass (m) and write the equation of motion for the mass that involves the tension...

  • please help with question 4. EXPERIMENT4: THE LINEAR AIR TRACK The aims of this experiment are...

    please help with question 4. EXPERIMENT4: THE LINEAR AIR TRACK The aims of this experiment are to: 1)investigate momentum and energy conservation in coll 2. study the cooversion of energy for a body in free fall. There are two types of collisions, elastic and inelastic. In both types of collision momentum is between two bodies in one dimension. The velocity (and hemee the momentum) may be positive or ycorserved. A body of mass m moving with a velocity vi has...

  • need the “exercise” answered. thanks PRACTICE IT Use the worked example above to help you solve this problem. A block with mass m 4.30 kg and a ball with mass m2 = 7.50 kg are connected by a lig...

    need the “exercise” answered. thanks PRACTICE IT Use the worked example above to help you solve this problem. A block with mass m 4.30 kg and a ball with mass m2 = 7.50 kg are connected by a light string that passes over a frictionless pulley, as shown in figure (a). The coefficient of kinetic friction between the block and the surface is 0.300. (a) Find the acceleration of the two objects and the tension in the string. a= 5.16...

  • Prelab 2: Write an expression for the conservation of energy for the system that you considered...

    Prelab 2: Write an expression for the conservation of energy for the system that you considered in Prelab 1. You may consider the system to be frictionless. The equations should include the change in gravitational potential energy of the falling mass (), the change in kinetic energy of the falling mass ) and the change in rotational kinetic energy of the platter (K-12l Prelab 3: In the following apparatus, the auxiliary platter is dropped onto the main platter Auxiliary Platter...

  • DL6 Physics 7A Activity 2.7 (page 1) Graphically Representing Energy Relationships A) Phenomenon: Falling Ball: Overview:...

    DL6 Physics 7A Activity 2.7 (page 1) Graphically Representing Energy Relationships A) Phenomenon: Falling Ball: Overview: Restate energy conservation; practice graphing energies from rest to just before it hits ground. Assume a 1 kg ball is dropped from a height of 2 meters above the floor. ituation I: We will analyze the energies of a dropped ball at any time between when it is dropped 1) Rethinking and restating energy conservation: Our standard expression of energy conservation for this situation...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT