Question

Consider the LTI system described by the following information X(s) = 2. S-2 where x(t) = 0 for t > 0, and y(t) = -e2u(-t) +
0 0
Add a comment Improve this question Transcribed image text
Answer #1

6- Be(s)<2 y(t) = -şetzt ul-t) + fetult) y(s). - 3 5-2 +51). x(s) - $+2-2+2 5 -2. The 3.1*-1-4) - .lt 542. ochels) 22. H(5) =

Add a comment
Know the answer?
Add Answer to:
Consider the LTI system described by the following information X(s) = 2. S-2 where x(t) =...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 4. the LTI system which we are given the following information: h(t) X(s) s +2 s-2...

    4. the LTI system which we are given the following information: h(t) X(s) s +2 s-2 andel-)-jeuc). (a) Determine H(s) and its region of convergence (b) Determine ht) (c) If keep the same system, but change the input x(t)-e-31 , determine the output y(t)

  • 2.6.1 Consider a causal continuous-time LTI system described by the differential equation u"(t) +...

    2.6.1-2.6.62.6.1 Consider a causal contimuous-time LTI system described by the differential equation$$ y^{\prime \prime}(t)+y(t)=x(t) $$(a) Find the transfer function \(H(s)\), its \(R O C\), and its poles.(b) Find the impulse response \(h(t)\).(c) Classify the system as stable/unstable.(d) Find the step response of the system.2.6.2 Given the impulse response of a continuous-time LTI system, find the transfer function \(H(s),\) the \(\mathrm{ROC}\) of \(H(s)\), and the poles of the system. Also find the differential equation describing each system.(a) \(h(t)=\sin (3 t) u(t)\)(b)...

  • need asap 1, (20 points) Suppose we have a İTİ system with impulse response(h(t) described as...

    need asap 1, (20 points) Suppose we have a İTİ system with impulse response(h(t) described as following h(t) 6u(t) where u(t) is unit step function. The output(Y (s)) is expressed as the product of input (R(s)) and transfer function Y(s) = R(s)H(s) The Laplace transform is defined as LTI system R(H) Y (s) Figure 1: LTI system in s-plane (a) (5 points) Find the tranisfer function(H(s)) of the LITI system. (b) (5 points) Find the Laplace transform of the input(r(t)....

  • Consider an LTI system with the impulse response h(t) = e- . Is the system casual?...

    Consider an LTI system with the impulse response h(t) = e- . Is the system casual? Explain. Find and plot the output s(t) given that the system input is x(t) = u(t). Note that s(t) in this case is commonly known as the step response of the system. If the input is x(t) = u(t)-u(t-T). Express the output y(t) as a function of s(t). Also, explicitly write the output y(t) as a function of t. a) b) c)

  • Assume amplitude a = 4 The input to an LTI system is shown in the graph...

    Assume amplitude a = 4 The input to an LTI system is shown in the graph below. Assume a = 4. X(t) 20 t @ by 0 Ingineering Given that the Laplace transform of the output is Y(s) = - (s + 3)(1 – e-45)2 s(s + 5)2 a) Find the transfer function of the system and the region of convergence for o = Re(s). H(s) = RoC: For regions of convergence, answer in interval notation e.g. (-INF, a),(a,b) or...

  • Question 2 A linear time-invariant (LTI) system has its response described by the following second-order differential...

    Question 2 A linear time-invariant (LTI) system has its response described by the following second-order differential equation: d'y) 3-10))-3*0)-6x0) dy_hi dx(t) where x() is the input function and y(t) is the output function. (a) Determine the transfer function H(a) of the system. (b) Determine the impulse response h(t) of the system.

  • 14. An LTI system has the following transfer function, determine the output system response y(t) due...

    14. An LTI system has the following transfer function, determine the output system response y(t) due to the input x(t) e u(t) H(s) s+2 S+7s+12 Answer: y(t)

  • Consider the LTI system described by the following impulse response: (a) h(n) = 2(0.5)n u(n). Determine:...

    Consider the LTI system described by the following impulse response: (a) h(n) = 2(0.5)n u(n). Determine: (i) The system function representation; (ii) the difference-equation representation (Note: this is just terminology that refers to expressing the input and output time-domain signals in the form of an equation. E.g., what we did when we went over the equations for block diagrams); (iii) The pole-zero plot, sketched by hand; and (iv) the output y(n) if the input is x(n) = (0.25)n u(n) [10...

  • Given a zero-state LTI system whose impulse response h(t) = u(t) u(t-2), if the input of...

    Given a zero-state LTI system whose impulse response h(t) = u(t) u(t-2), if the input of the system is r(t), find the system equation which relates the input to the output y(t) 4. (20 points) If a causal signal's s-domain representation is given as X (s) = (s+ 2)(s2 +2s + 5) (a) find all the poles and zero of the function. 2 1 52243 orr

  • For the LTI system described by the following impulse response:

    For the LTI system described by the following impulse response: \(h(n)=n\left(\frac{1}{3}\right)^{n} u(n)+\left(-\frac{1}{4}\right)^{n} u(n)\)Determine the following:1) The system function representation,2) The Difference equation representation3) The pole-zero plot4) the output \(y(n)\) if the input \(x(n)\) is: \(x(n)=\left(\frac{1}{4}\right)^{n} u(n)\)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT