Question

For the LTI system described by the following impulse response:

For the LTI system described by the following impulse response: \(h(n)=n\left(\frac{1}{3}\right)^{n} u(n)+\left(-\frac{1}{4}\right)^{n} u(n)\)

Determine the following:

1) The system function representation,

2) The Difference equation representation

3) The pole-zero plot

4) the output \(y(n)\) if the input \(x(n)\) is: \(x(n)=\left(\frac{1}{4}\right)^{n} u(n)\)

3 0
Add a comment Improve this question Transcribed image text
Answer #2
Y3(n)=x(8-3n)
source: 3n)
answered by: Muntadher
Add a comment
Answer #3
Y3(n)=x(8-3n)
source: Y3(n)=x(8-3n)
answered by: Muntadher
Add a comment
Know the answer?
Add Answer to:
For the LTI system described by the following impulse response:
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider the LTI system described by the following impulse response: (a) h(n) = 2(0.5)n u(n). Determine:...

    Consider the LTI system described by the following impulse response: (a) h(n) = 2(0.5)n u(n). Determine: (i) The system function representation; (ii) the difference-equation representation (Note: this is just terminology that refers to expressing the input and output time-domain signals in the form of an equation. E.g., what we did when we went over the equations for block diagrams); (iii) The pole-zero plot, sketched by hand; and (iv) the output y(n) if the input is x(n) = (0.25)n u(n) [10...

  • For a causal LTI discrete-time system described by the difference equation:

    For a causal LTI discrete-time system described by the difference equation: y[n] + y[n – 1] = x[n] a) Find the transfer function H(z).b) Find poles and zeros and then mark them on the z-plane (pole-zero plot). Is this system BIBO? c) Find its impulse response h[n]. d) Draw the z-domain block diagram (using the unit delay block z-1) of the discrete-time system. e) Find the output y[n] for input x[n] = 10 u[n] if all initial conditions are 0.

  • CONVOLUTION - Questions 4 and 5 4. Consider an LTI system with an impulse response h(n)...

    CONVOLUTION - Questions 4 and 5 4. Consider an LTI system with an impulse response h(n) = [1 2 1] for 0 <n<2. If the input to the system is x(n) = u(n)-un-2) where u(n) is the unit-step, calculate the output of the system y(n) analytically. Check your answer using the "conv" function in MATLAB. 5. Consider an LTI system with an impulse response h(n) = u(n) where u(n) is the unit-step. (a) If the input to the system is...

  • A discrete-time LTI system has the system function H(z) given below:

    A discrete-time LTI system has the system function \(H(z)\) given below:$$ H(z)=\frac{z^{2}}{z^{2}-\frac{1}{4}} $$(a) Sketch the pole-zero plot for this system. How many possible regions of convergence (ROCs) are there for \(H(z)\). List the possible ROCs and indicate what type of sequence (left-sided, right-sided, two-sided, finite-length) they correspond to.(b) Which ROC (or ROCs) correspond to a stable system? Why?(c) Which ROC (or ROCs) correspond to a causal system? Why?(d) Write a difference equation that relates the input to the output of...

  • Determine the impulse response h[n] of the LTI system described by the difference equation

    Determine the impulse response h[n] of the LTI system described by the difference equationy[n] - 0.35y[n-1] = x[n]

  • Given a zero-state LTI system whose impulse response h(t) = u(t) u(t-2), if the input of...

    Given a zero-state LTI system whose impulse response h(t) = u(t) u(t-2), if the input of the system is r(t), find the system equation which relates the input to the output y(t) 4. (20 points) If a causal signal's s-domain representation is given as X (s) = (s+ 2)(s2 +2s + 5) (a) find all the poles and zero of the function. 2 1 52243 orr

  • 1. An LTI system has an impulse response h[n] for which thez transform is a. Plot...

    1. An LTI system has an impulse response h[n] for which thez transform is a. Plot the pole-zero pattern for H(z). b. Using the fact that signals of the form z are eigenfunctions of LTI systems, determine the system output for all n if the input x [n] is given by 72 I3(2)

  • A causal discrete-time LTI system is described by the equation

    A causal discrete-time LTI system is described by the equationwhere z is the input signal, and y the output signal y(n) = 1/3x(n) + 1/3x(n -1) + 1/3x(n - 2) (a) Sketch the impulse response of the system. (b) What is the dc gain of the system? (Find Hf(0).) (c) Sketch the output of the system when the input x(n) is the constant unity signal, x(n) = 1. (d) Sketch the output of the system when the input x(n) is the unit step signal, x(n)...

  • 2.6.1 Consider a causal continuous-time LTI system described by the differential equation u"(t) +...

    2.6.1-2.6.62.6.1 Consider a causal contimuous-time LTI system described by the differential equation$$ y^{\prime \prime}(t)+y(t)=x(t) $$(a) Find the transfer function \(H(s)\), its \(R O C\), and its poles.(b) Find the impulse response \(h(t)\).(c) Classify the system as stable/unstable.(d) Find the step response of the system.2.6.2 Given the impulse response of a continuous-time LTI system, find the transfer function \(H(s),\) the \(\mathrm{ROC}\) of \(H(s)\), and the poles of the system. Also find the differential equation describing each system.(a) \(h(t)=\sin (3 t) u(t)\)(b)...

  • Consider an LTI system with the impulse response h(t) = e- . Is the system casual?...

    Consider an LTI system with the impulse response h(t) = e- . Is the system casual? Explain. Find and plot the output s(t) given that the system input is x(t) = u(t). Note that s(t) in this case is commonly known as the step response of the system. If the input is x(t) = u(t)-u(t-T). Express the output y(t) as a function of s(t). Also, explicitly write the output y(t) as a function of t. a) b) c)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT