Question

Consider that the forward-path transfer function matrix and the feedback-path transfer function matrix of the control system

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Consider that the forward-path transfer function matrix and the feedback-path transfer function matrix of the control...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 3. For the feedback control system shown in Figure Q3 below, the forward-path transfer function given...

    3. For the feedback control system shown in Figure Q3 below, the forward-path transfer function given by G(s) and the sensor transfer function is given by H(s). R(s) C(s) G(s) H(s) Figure Q3 It is known that G(s) -- K(+20) S(+5) H(s) = and K is the proportional gain. (S+10) i. Determine the closed-loop transfer function and hence the characteristic equation of the system. [6 marks] ii. Using the Routh-Hurwitz criterion, determine the stability of the closed-loop system. Determine the...

  • 5.3. Given transfer functions of the forward path and the feedback of a control system: 500(s2...

    5.3. Given transfer functions of the forward path and the feedback of a control system: 500(s2 +20s+200(s+2) Gm(s)=(s +0.1)(s2 + 160s +1000) Fg (s) ss +500) a) Obtain magnitude and phase of the Bode plot of this system b) Obta in closed-loop system frequency response at ω-3 rad/sec. n the feedhack of a control system:

  • The Bode diagram of the forward-path transfer function of a unity- feedback control system is obtained...

    The Bode diagram of the forward-path transfer function of a unity- feedback control system is obtained experimentally when the forward gain is fixed to certain value K. a) Find the gain and phase margin of the system from the diagram the best you can read. Is the system stable or unstable? Justify your answer. (25 points) b) Find out how much the gain must be changed from its original value for having a marginally stable system (25 points) Print and...

  • Consider the following transfer function of a linear control system Determine the state feedba...

    Consider the following transfer function of a linear control system Determine the state feedback gain matrix that places the closed system at s=-32, -3.234 ± j3.3. Design a full order observer which produces a set of desired closed loop poles at s=-16, -16.15±j16.5 Assume X1 is measurable, design a reduced order observer with desired closed loop poles at -16.15±j16.5 We were unable to transcribe this image1 Y(s) U(s) (s+1)(s2+0.7s+2) Consider the following transfer function of a linear control system (a)...

  • Consider the following transfer function of a linear control system 1- Determine the state feedb...

    Consider the following transfer function of a linear control system 1- Determine the state feedback gain matrix that places the closed system at s=-32, -3.234 ± j3.3. 2- Design a full order observer which produces a set of desired closed loop poles at s=-16, -16.15±j16.5 3-Assume X1 is measurable, design a reduced order observer with desired closed loop poles at -16.15±j16.5 We were unable to transcribe this image1 Y(s) U(s) (s+1)(s2+0.7s+2) Consider the following transfer function of a linear control...

  • A unity feedback system with the forward transfer function G)2)(s +5) is operating with a closed-...

    A unity feedback system with the forward transfer function G)2)(s +5) is operating with a closed-loop step response that has 15% overshoot. Do the following: a) Evaluate the settling time for a unit step input; b) Design a PD control to yield a 15% overshoot but with a threefold reduction in settling time; c) Evaluate the settling time, overshoot, and steady-state error with the PD control. A unity feedback system with the forward transfer function G)2)(s +5) is operating with...

  • Problem 2: (20 points) Consider a unity feedback system with the following forward path transfer function...

    Problem 2: (20 points) Consider a unity feedback system with the following forward path transfer function G(s) = - cla_K(s + a)(8+3) s(s2 +1) (1) Construct the root locus for K >0 and a = 5; (2) Construct the root locus for a > 0 and K = 10.

  • 1. Consider a unity feedback control system with the transfer function G(s) = 1/[s(s+ 2)] in...

    1. Consider a unity feedback control system with the transfer function G(s) = 1/[s(s+ 2)] in the forward path. (a) Design a proportional controller that yields a stable system with percent overshoot less that 5% for the step input (b) Find settling time and peak time of the closed-loop system designed in part (a); (c) Design a PD compensator that reduces the settling time computed in (b) by a factor of 4 while keeping the percent overshoot less that 5%...

  • A unity feedback system with the forward transfer function G (s) = s(s+2)(s15) is operating with ...

    A unity feedback system with the forward transfer function G (s) = s(s+2)(s15) is operating with a closed-loop step response that has 15% overshoot. Do the following: a) Evaluate the settling time for a unit step input b) Design a PD control to yield a 15% overshoot but with a threefold reduction in settling time; c) Evaluate the settling time, overshoot, and steady-state error with the PD control. A unity feedback system with the forward transfer function G (s) =...

  • Problem 1. A unity feedback system with forward transfer function G(s) is operating with a closed...

    Problem 1. A unity feedback system with forward transfer function G(s) is operating with a closed-loop step response that has 20.5% overshoot. G)-(+8)6 + 25) G(s) (a) Design a PD compens ator to decrease the settling time of the closed-loop system by a factor of four Problem 1. A unity feedback system with forward transfer function G(s) is operating with a closed-loop step response that has 20.5% overshoot. G)-(+8)6 + 25) G(s) (a) Design a PD compens ator to decrease...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT