Question

1.The heat needed to raise the temperature by 10 C of the 10 moles an ideal...

1.The heat needed to raise the temperature by 10 C of the 10 moles an ideal gas is 2100J.

Find:

a)the change in volume.

b)heat capacities pressure and at constant volume, if during that process the pressure is constant and is equal 1.0*10*5 Pa?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

1. (a) Ideal gas equation is given by

PV = nRT

At constant pressure P (P = 1.0 x 105 Pa)

:. PdV = nRT

n RdT :.0V = D = 10 X 8.314 x 10 m 1.0 x 105 = 8314 cm

(b) Heat capacity of ideal gas at constant pressure is Cp. Here in this problem, the heat required to raise temperature of \Delta T for n mole of monatomic ideal gas will be

dQ = nCAT

:: 2100 = 10 x C x 10

..C, = 21 J. mol-1. K-1

The ratio of specific heat at constant pressure and constant volume is \gamma which is equal to 1.66 for an ideal monatomic gas and 1.4 for a diatomic gas. Then for monoatomic gas the specific heat at constant volume will be

= 12.65.J. mol-1. K-1

Add a comment
Know the answer?
Add Answer to:
1.The heat needed to raise the temperature by 10 C of the 10 moles an ideal...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The amount of heat needed to raise the temperature of 1 mole of a substance by...

    The amount of heat needed to raise the temperature of 1 mole of a substance by one Celsius degree (or, equivalently, one kelvin) is called the molar heat capacity of the system, denoted by the letter C. If a small amount of heat dQ is put into n moles of a substance, and the resulting change in temperature for the system is dT, then C=1ndQdT. This is the definition of molar heat capacity--the amount of heat Q added per infinitesimal...

  • A cylinder contains 9.8 moles of ideal gas, initially at a temperature of 119°C. The cylinder is provided with a frictio...

    A cylinder contains 9.8 moles of ideal gas, initially at a temperature of 119°C. The cylinder is provided with a frictionless piston, which maintains a constant pressure of 7.4 × 105 Pa on the gas. The gas is cooled until its temperature has decreased to 27°C. For the gas CV = 14.41 J/mol ∙ K, and the ideal gas constant R = 8.314 J/mol · K. (a) Find the work done by (or on) the gas during this process. Is...

  • Ch 19 HW Relationships between Molar Heat Capacities 9 of 23 Constants The amount of heat needed to raise the temperatu...

    Ch 19 HW Relationships between Molar Heat Capacities 9 of 23 Constants The amount of heat needed to raise the temperature of 1 mole of a substance by one Celsius degree (or, equivalently, one kelvin) is called the molar heat capacity of the system, denoted by the letter C. If a small amount of heat dQ is put into n moles of a substance, and the resulting change in temperature for the system is dT, then Part A Consider an...

  • An insulated vessel contains four moles of an ideal, monatomic gas at absolute temperature To. The...

    An insulated vessel contains four moles of an ideal, monatomic gas at absolute temperature To. The gas is placed in thermal contact with a heat reservoir at temperature T./3. Heat is exchanged between the reservoir and the gas until thermal equilibrium is established. (a) What is the equilibrium temperature of the gas? (b) is the process of heat exchange reversible or irreversible? Explain. (c) How does the pressure of the gas change during the process of heat exchange? Does the...

  • A cylinder contains 1.2 moles of ideal gas, initially at a temperature of 116°C. The cylinder...

    A cylinder contains 1.2 moles of ideal gas, initially at a temperature of 116°C. The cylinder is provided with a frictionless piston, which maintains a constant pressure of 6.4 x 105 Pa on the gas. The gas is cooled until its temperature has decreased to 27°C. For the gas Cy= 11.65 J/mol K, and the ideal gas constant R = 8.314 J/mol K. Part A Find the work done by (or on the gas during this process. Express your answer...

  • A cylinder contains 0.0100 mol of helium at 27.0 ?C. How much heat is needed to...

    A cylinder contains 0.0100 mol of helium at 27.0 ?C. How much heat is needed to raise the temperature to 67.0 ?C while keeping the volume constant?(4.99) If instead the pressure of the helium is kept constant, how much heat is needed to raise the temperature from 27.0 ?C to 67.0 ?C?(8.31 J) If the gas is ideal, what is the change in its internal energy in part A? If the gas is ideal, what is the change in its...

  • I. (30 pts.) One mole of an ideal gas with constant heat capacities and ? 5/3...

    I. (30 pts.) One mole of an ideal gas with constant heat capacities and ? 5/3 is compressed adiabatically in a piston-cylinder device from T1-300 K, pi = 1 bar to p2 = 10 bar at a constant external pressure Pext"- P2 -10 bar. Calculate the final temperature, T2, and W, Q. AU, AH for this process. 2. (20 pts.) Repeat problem 1 for an adiabatic and reversible compression. 3. (20 pts.) A rigid, insulated tank is divided into two...

  • A cylinder with a movable piston contains 17.5 moles of a monatomic ideal gas at a...

    A cylinder with a movable piston contains 17.5 moles of a monatomic ideal gas at a pressure of 1.66 × 105 Pa. The gas is initially at a temperature of 300 K. An electric heater adds 46600 J of energy into the gas while the piston moves in such a way that the pressure remains constant. It may help you to recall that CPCP = 20.79 J/K/mole for a monatomic ideal gas, and that the number of gas molecules is...

  • a cylinder contains 10 moles of an ideal gas at a temperature of 300 K. The...

    a cylinder contains 10 moles of an ideal gas at a temperature of 300 K. The gas is compressed at constant pressure until the final volume equals 0.77 times the initial volume. The molar heat capacity at constant volume of the gas is 24.0 j/mol. What is the heat absorbed by the gas in kJ

  • A tank with a constant volume of 5.89 m3 contains 15 moles of a monatomic ideal...

    A tank with a constant volume of 5.89 m3 contains 15 moles of a monatomic ideal gas. The gas is initially at a temperature of 300 K. An electric heater is used to transfer 56500 J of energy into the gas. It may help you to recall that CVCV = 12.47 J/K/mole for a monatomic ideal gas, and that the number of gas molecules is equal to Avagadros number (6.022 × 1023) times the number of moles of the gas....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT