Question



Consider the system with open-loop transfer function s+2 G(s) = k 82 4 Show the type of poles that the close-loop system has
0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Consider the system with open-loop transfer function s+2 G(s) = k 82 4 Show the type...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Problem 5. (20pts) The open-loop transfer function of a unity feedback system G(8) -- +2) a)...

    Problem 5. (20pts) The open-loop transfer function of a unity feedback system G(8) -- +2) a) Locate open-loop zeros and open-loop poles. b) Construct the root-locus diagram as 0 <K <oo. Mark the portions of the real axis that belong to the root locus - Mark with K =0 the point where the root locus bra O the point where the root locus branches start and with K = oo the point where the branches end. - Find break-away and/or...

  • Exercise 10 (8 Marks) Given the open loop transfer function of a system: KH(S) = K...

    Exercise 10 (8 Marks) Given the open loop transfer function of a system: KH(S) = K s(s +3Xs? +2s +2) Draw manually the root locus plot for the system and determine: a) The number of branches. b) The starting and ending points of all the branches. c) The location of the centroid d) The range of K to keep this and angles of asymplotes. e) The intersections of the root loci with the imaginary axis and the corresponding value of...

  • 2. Consider the unity feedback negative system with an open-loop function G(S)-KS. a. Plot the locations...

    2. Consider the unity feedback negative system with an open-loop function G(S)-KS. a. Plot the locations of open-loop poles with X and zeros with O on an s-plane. b. Find the number of segments in the root locus diagram based on the number of poles and zeros. c. The breakaway point (the point at which the two real poles meet and diverge to become complex conjugates) occurs when K = 0.02276. Show that the closed-loop system has repeated poles for...

  • F(G) = list 62 Transfer function: F(s) = K, s + K2 with closed loop 54...

    F(G) = list 62 Transfer function: F(s) = K, s + K2 with closed loop 54 + 5g3+ 45²-10s control system a) H(s) = + F(s) 5(5-1)(8+3+;)(5+3) Find the range of gains in the K, , Kz plane for which closed loop system is stable. And sketch the result. b With K,K, K₂=0.1K, sketch the root locus for system of part (a). Show topen loop poles and zeros, asymptotes of loci fork loci segments on real axis and imaginary axis...

  • Question# 1 (25 points) For a unity feedback system with open loop transfer function K(s+10)(s+20) (s+30)(s2-20s+2...

    Question# 1 (25 points) For a unity feedback system with open loop transfer function K(s+10)(s+20) (s+30)(s2-20s+200) G(s) = Do the following using Matlab: a) Sketch the root locus. b) Find the range of gain, K that makes the system stable c) Find the value of K that yields a damping ratio of 0.707 for the system's closed-loop dominant poles. d) Obtain Ts, Tp, %OS for the closed loop system in part c). e) Find the value of K that yields...

  • Q1. Show analytically that the Root Locus for the unity feedback system with open loop transfer f...

    Q1. Show analytically that the Root Locus for the unity feedback system with open loop transfer function: (a) [10 marks] K(s 4) (s + 2) is a circle, and find the centre and the radius. Determine the minimum value of the damping ratio and the corresponding value of K (b) The root locus of the open loop transfer function: [10 marks] s(s26s +15) is depicted in Figure Q1(b). Find the minimum value of gain K that will render the system...

  • 7. Consider a unity feedback control system with open-loop transfer function G(s) = k 5 s...

    7. Consider a unity feedback control system with open-loop transfer function G(s) = k 5 s + 2)(52 + 4s + 5) Find the value of gain K > 0 for which the root locus crosses the imaginary axis.

  • 9. Consider a negative unity-feedback control system with the loop transfer function s +8 D(s) G(8)=K-...

    9. Consider a negative unity-feedback control system with the loop transfer function s +8 D(s) G(8)=K- s+1) ((s + 1)2 + 22 (s + 94 + 793 + 1932 +33s + 20 (a) Determine the asymptotes of the root-locus diagram for K > 0, if any. (06pts) Answer: The real-axis crossing of the asymptote(s), a = The angle(s) of the asymptote(s), 0q = _ (b) Determine the break-away and the break-in points of the root-locus diagram for K > 0,...

  • 5. A milling machine has the following open-loop transfer function: (s 1)(s+3) Draw a block diagram describing a negati...

    5. A milling machine has the following open-loop transfer function: (s 1)(s+3) Draw a block diagram describing a negative feedback system that includes a plant a) with transfer function of Gi(s) and a cascade proportional controller with a gain of K. b) Write the closed-loop transfer function for such a negative feedback system c The plant has poles that are solutions to P(s) 0 and zeros that are the solutions to Z(s)-0. Write an equation involving K, P(s) and Z(s)...

  • Lectures 15-18: Root-locus method 5.1 Sketch the root locus for a unity feedback system with the ...

    help on #5.2 L(s) is loop transfer function 1+L(s) = 0 lecture notes: Lectures 15-18: Root-locus method 5.1 Sketch the root locus for a unity feedback system with the loop transfer function (8+5(+10) .2 +10+20 where K, T, and a are nonnegative parameters. For each case summarize your results in a table similar to the one provided below. Root locus parameters Open loop poles Open loop zeros Number of zeros at infinity Number of branches Number of asymptotes Center of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT