Question

An experiment is performed aboard the International Space Station to verify that linear momentum is conserved during collisions in a zero-g environment. The experiment involves a 3-D completely inelastic collision of three drops of honey. At the moment just before they all collide, the masses and velocities of the drops are

What is your prediction for the speed, V, of the combined honey drop after the collision? An experiment is performed aboard the International Space Station to verify that linear momentum is conserved during collisions in a zero-g environment. The experiment involves a 3-D completely inelastic collision of three drops of honey. At the moment just before they all collide, the masses and velocities of the drops are m,-347 ,-139 m/s* m,-52.3 ,-(12.5 m/sj m,-76.5 g18.3 m/s v, - 13.9 m/slr What is your prediction for the speed, V, of the combined honey drop after the collision? Number m s

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Here ,

let the speed of combined honey drop is V

m1 * v1 + m2 * v2 + m3 * v3 = (m1 + m2 + m3) * V

34.7 * 13.9 i + 52.3 * 12.5 j + 76.5 * 18.3 k = (34.7 + 52.3 + 76.5) * V

V = 2.95 i + 4 j + 8.6 k m/s

V = sqrt(2.95^2 + 4^2 + 8.6^2) = 9.9 m/s

the combined speed after the collision is 9.9 m/s

Add a comment
Know the answer?
Add Answer to:
An experiment is performed aboard the International Space Station to verify that linear momentum is conserved...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Introduction: In this lab you will investigate the conservation of linear momentum: momentum before an event...

    Introduction: In this lab you will investigate the conservation of linear momentum: momentum before an event equals momentum after an event if there is an absence of a non-conservative forces such as friction. The event is this case is a collision between two air track gliders. Two types of collisions will be studied. One is an elastic collision which will not be studied in this lab. after the collision. The second is an inelastic collision where after two objects collide,...

  • please help with question 4. EXPERIMENT4: THE LINEAR AIR TRACK The aims of this experiment are...

    please help with question 4. EXPERIMENT4: THE LINEAR AIR TRACK The aims of this experiment are to: 1)investigate momentum and energy conservation in coll 2. study the cooversion of energy for a body in free fall. There are two types of collisions, elastic and inelastic. In both types of collision momentum is between two bodies in one dimension. The velocity (and hemee the momentum) may be positive or ycorserved. A body of mass m moving with a velocity vi has...

  • 1) Why is there a different equation for elastic vs inelastic collisions? Are they really different?...

    1) Why is there a different equation for elastic vs inelastic collisions? Are they really different? 5) If the first car does not go through either photogate after collision, what will its velocity essentially be? The conservation of momentum is a fundamental law in classical mechanics. It states that the total momentum of a system at the initial condition and ending conditions must be equivalent or p. - P. This can be modeled by studying the effect of objects in...

  • in one dimension Mech COnscretion of moment HW-62 3. Two astronauts A and B. narticipate in...

    in one dimension Mech COnscretion of moment HW-62 3. Two astronauts A and B. narticipate in three collision experiments in a weightless, friction environment. In each experiment, astronaut B is initially at rest, and astronaut A has an initial momentum of 20 kg-m/s to the right. (The velocities of the astronauts are measured with me to a nearby space station.) After Before Experiments 1, 2, and 3 At rest 13. J = 20 kg-m's At rest The astronauts push on...

  • in one dimension Mech COnscretion of moment HW-62 3. Two astronauts A and B. narticipate in...

    in one dimension Mech COnscretion of moment HW-62 3. Two astronauts A and B. narticipate in three collision experiments in a weightless, friction environment. In each experiment, astronaut B is initially at rest, and astronaut A has an initial momentum of 20 kg-m/s to the right. (The velocities of the astronauts are measured with me to a nearby space station.) After Before Experiments 1, 2, and 3 At rest 13. J = 20 kg-m's At rest The astronauts push on...

  • Anyone please help me solve the last part to find theortetical of V1 and V2 using the first page ...

    anyone please help me solve the last part to find theortetical of V1 and V2 using the first page type of collision thank you 4. Cartl has a mass of ml and a velocity of v0. Cart2 has a mass of m2 and is stationary. Cartl then hits cart 2. After the collision, the velocity of cartl is vl and the velocity of cart2 is v2. In any collision, what happens to the m Write an equation for the momentum...

  • Impulse and Momentum Name: Date: TA's Name: Learning Objectives: 1. Understanding force ys time curves for...

    Impulse and Momentum Name: Date: TA's Name: Learning Objectives: 1. Understanding force ys time curves for a collision. 2. Calculating impulse using force vs. time curves. 3. Understanding the relationship between impulse and momentum. 4. Applying conservation of momentum for inelastic collisions. Apparatus: Aluminum track, track legs, two smart carts, two cart stops, and small black rectangular cart masses. Part A: Collision of a moving cart with a fixed cart cart 1 Cart stop stationary cart cart stop Consider the...

  • Table 6 and Table 7 and Table 8 Calculations Please! oni a auns ayeu oj seg on aup uo syans...

    Table 6 and Table 7 and Table 8 Calculations Please! oni a auns ayeu oj seg on aup uo syans sped ojaA al o suousod ap snipe os paau no x between two balls although they look like sticking together, but the timers count them separately aery ut aun1. un ep an i ( Table 1 Data of the balls' mass, dimension and position. m (kg) d (m) d, (m) d, (m) h, (m) 031S 03I Ol05 O01135 O L...

  • OAL Combine the concepts of conservation of energy and conservation of momentum in inelastic collisions. In...

    OAL Combine the concepts of conservation of energy and conservation of momentum in inelastic collisions. In figure a, a bullet and a wooden block are shown in two configurations. In the first configuration, the block, labeled m2, hangs vertically from a ceiling. A bullet, labeled m1, approaches the block horizontally from the left. A rightward arrow points from the bullet and is labeled vector v1i. A rightward arrow, shorter than the first, points from the block and is labeled vector...

  • Experiment 2: Rotational KE and Moment of Inertia Data. Please help with Last Trial Experiment Il:...

    Experiment 2: Rotational KE and Moment of Inertia Data. Please help with Last Trial Experiment Il: Rotational KE and Moment of Inertia Data Radius of step-pulley groove: r = _ 0.02 Rod: L = 0.25m Mw=_30 8 = 0.16 Average mass of brass weights: Mr = _50 Mass of falling body: M = 40 8 m 0000003 Wahl APE -m /s IR rad Diff % m g ΔΚΕ, g.m/s Bom rad/s rad/s 0.12.0024 .9408 0.05 .4 0.18 .0036 1.4112 0.10...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT