Question

A rigid container initially contains 0.6 kg of oxygen at 4,000 kPa and 300 K, the...

A rigid container initially contains 0.6 kg of oxygen at 4,000 kPa and 300 K, the gas cools by lowering the pressure to 3,200 kPa. Determine: (a) the volume of the reservoir, in m3; (b) the final temperature, in K and (c) the total heat transferred, in kJ.

That's all I have.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

so (a) Mars of Holar g = 0.6 kg = 600 gm Mars of og = 38 g/mol les of oq = op Pressure = 4000 kPa = 4000 x103 Pa. I ? 1 atmI L = looomb = 1000 cm (1cm= I m) = 100 fm) Il = 1000 m 10-3 m 3 y= 1.7 x 10-3 m3. 11.7 X10 –3 m3) T = (b) Now I new = 3800 k

Add a comment
Know the answer?
Add Answer to:
A rigid container initially contains 0.6 kg of oxygen at 4,000 kPa and 300 K, the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 6.50 m A closed, rigid tank contains 5 kg of air initially at 300 K, 1...

    6.50 m A closed, rigid tank contains 5 kg of air initially at 300 K, 1 bar. As illustrated in Fig. P6.50, the tank is in contact with a thermal reservoir at 600 K and heat transfer occurs at the boundary where the temperature is 600 K. A stirring rod transfers 600 kJ of energy to the air. The final temperature is 600 K. The air can be modeled as an ideal gas with cy = 0.733 kJ/kg . K...

  • 6.) A closed, rigid tank contains 5 kg of air initially at 300 K, 1 bar....

    6.) A closed, rigid tank contains 5 kg of air initially at 300 K, 1 bar. The diagram below shows a tank in contact with a thermal reservoir at 600 K and heat transfer occurs at the boundary where the temperature is 600 K. A stirring rod transfers 600 kJ of energy to the air. The final temperature is 600 K. The air can be modeled as an ideal gas with c 0.733 k.J/kg K and kinetic and potential energy...

  • A piston-cylinder assembly initially contains 0.8 kg of air at 100 kPa and 300 K. It...

    A piston-cylinder assembly initially contains 0.8 kg of air at 100 kPa and 300 K. It is then compressed in a polytropic process PV3 = C to half the original volume. Assuming the ideal gas model for air and specific heat ratio is constant, k=1.4, determine (a) the final temperature, (b) work and heat transfer, each in kJ. R= 0.287 kJ/kg K. W, 82

  • 5. A rigid tank initially contains 10 kg O2 at 200 kPa and 600 K. Now...

    5. A rigid tank initially contains 10 kg O2 at 200 kPa and 600 K. Now O2 is gradually cooled under constant volume until its temperature reaches 455 K. (18 Points) (a) Calculate the pressure of O2 at final state. (4 points) (b) Determine the boundary work. (6 points) (b) Calculate the heat transfer during this process. (8 Points) let me know if u want the property table MAE 320 - Thermodynamics + > e ecampus.wvu.edu/bbcswebdav/pid-6846897-dt-content-rid-82617141 1/courses/star50314.202005/MAE320-2020-Summer-HW04.pdf Q4 to Q6...

  • A piston–cylinder device initially contains 0.6 m3 of saturated water vapor at 250 kPa. At this...

    A piston–cylinder device initially contains 0.6 m3 of saturated water vapor at 250 kPa. At this state, the piston is resting on a set of stops, and the mass of the piston is such that a pressure of 300 kPa is required to move it. Heat is now slowly transferred to the steam until the volume becomes 1.5 m3. Use the data from the steam tables. a) Determine the final temperature. b) Determine the work done during this process. c)...

  • Required information A piston-cylinder device initially contains 0.6 m3 of saturated water vapor at 250 kPa....

    Required information A piston-cylinder device initially contains 0.6 m3 of saturated water vapor at 250 kPa. At this state, the piston is resting on a set of stops, and the mass of the piston is such that a pressure of 300 kPa is required to move it. Heat is now slowly transferred to the steam until the volume becomes 1.3 m3. Use the data from the steam tables. Determine the final temperature. (You must provide an answer before moving on...

  • A 2.2-m3 rigid tank initially contains air at 100 kPa and 22°C. The tank is connected...

    A 2.2-m3 rigid tank initially contains air at 100 kPa and 22°C. The tank is connected to a supply line through a valve. Air is flowing in the supply line at 600 kPa and 22°C. The valve is opened, and air is allowed to enter the tank until the pressure in the tank reaches the line pressure, at which point the valve is closed. A thermometer placed in the tank indicates that the air temperature at the final state is...

  • 10 kg of R-134a at 300 kPa fills a rigid container whose volume is 14 L....

    10 kg of R-134a at 300 kPa fills a rigid container whose volume is 14 L. Determine the temperature and total enthalpy in the container. The container is now heated until the pressure is 600 kPa. Determine the temperature and total enthalpy when the heating is completed. Use data from the steam tables. R-134a 300 kPa m kg 14L The temperature in the container is "C. The total enthalpy in the container is kJ. The temperature in the container when...

  • An ideal gas initially at 270 K undergoes an isobaric expansion at 2.50 kPa. The volume...

    An ideal gas initially at 270 K undergoes an isobaric expansion at 2.50 kPa. The volume increases from 1.00 m3 to 3.00 m3 and 14.4 kJ is transferred to the gas by heat. (a) What is the change in internal energy of the gas? kJ (b) What is the final temperature of the gas? K

  • A rigid tank that contains 2.4 kg of N2 at 25°C and 550 kPa is connected...

    A rigid tank that contains 2.4 kg of N2 at 25°C and 550 kPa is connected to another rigid tank that contains 4.4 kg of O2 at 25°C and 150 kPa. The valve connecting the two tanks is opened, and the two gases are allowed to mix. If the final mixture temperature is 25°C, determine the volume of each tank and the final mixture pressure. The gas constants of N2 and O2 are 0.2968 and 0.2598 kPa.m3/kg.K, respectively. The universal...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT