Question

Air in a piston/cylinder device undergoes a continuous cycle as shown here: from State 1 to State 2 to State 3 to State 1 to

0 0
Add a comment Improve this question Transcribed image text
Answer #1

(LP) - m P, = 13 = 330 kPa а - 160 kto T = T2=450k @ Now - Vj = ? PE=RT - VF RII Pi 0,= 0.287 x 4150 -0.3714 330 o wiegh: V =

Add a comment
Know the answer?
Add Answer to:
Air in a piston/cylinder device undergoes a continuous cycle as shown here: from State 1 to...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Air in a cylinder-Piston device undergoes a cyclic process. Initially, the air is at P-5 [MPa)...

    Air in a cylinder-Piston device undergoes a cyclic process. Initially, the air is at P-5 [MPa) and T-350 [C]. Process 1 to 2 is an isothermal expansion from 5 (MPa) to 1 [MPa). Process 2 to 3 is a polytropie compression to 5 [MPa) with a polytropic exponent n=1.3. The cycle gets completed by a constant pressure process from the state 3 to 1. Air properties are R 0.287 [Kj/Kg. K] and k=1.4 and the mass of air in cylinder...

  • (6). (12 points) A piston-cylinder device contains 0.25 kg of air initially at 1.8 MPa and...

    (6). (12 points) A piston-cylinder device contains 0.25 kg of air initially at 1.8 MPa and 360 °C. The air is first expanded isothermally to 400 kPa, then compressed polytropically, with a polytropic exponent of 1.2 to the initial pressure, and finally compressed at the constant pressure to the initial state. Pease find: (a) (3p) The boundary work for the isothermal expansion process. (b) (3p) The boundary work for the polytropic compression process. (c) (3p)The boundary work for the constant...

  • Problem 7-173- A piston–cylinder device contains air that undergoes a reversible thermodynamic cycle. Initially, air is...

    Problem 7-173- A piston–cylinder device contains air that undergoes a reversible thermodynamic cycle. Initially, air is at 400 kPa and 300 K with a volume of 0.3 m3. Air is first expanded isothermally to 150 kPa, then compressed adiabatically to the initial pressure, and finally compressed at the constant pressure to the initial state. Accounting for the variation of specific heats with temperature, determine the work and heat transfer for each process.

  • Air in a piston-cylinder undergoes a cycle with the following processes: Process 1-2: Isobaric process from...

    Air in a piston-cylinder undergoes a cycle with the following processes: Process 1-2: Isobaric process from P = 0.1 MPa, T1 = 600K to T2 = 1200K Process 2-3: Isothermal process to state 3 where P3 = 0.05 MPa Process 3-4: Isochoric process to state 4 where P4 = 0.031 MPa Process 4-1: Polytropic process back to state 1 (a) Show the processes in a P-V plot showing the values. Also calculate or state the values of P. V. T...

  • A frictionless piston-cylinder device contains 0.2 kg of air at 100 kPa and 27°C. The air...

    A frictionless piston-cylinder device contains 0.2 kg of air at 100 kPa and 27°C. The air is now compressed slowly according to the relation P Vk = constant, where k = 1.4, until it reaches a final temperature of 77°C. Sketch the P-V diagram of the process with respect to the relevant constant temperature lines, and indicate the work done on this diagram. Using the basic definition of boundary work done determine the boundary work done during the process [-7.18...

  • A piston–cylinder device initially contains air at 150 kPa and 27 °C. In this state, the...

    A piston–cylinder device initially contains air at 150 kPa and 27 °C. In this state, the piston is resting on a pair of stops, and the enclosed volume is 400 litres. The mass of the piston is such that a 200 kPa pressure is required to move it. The air is now heated until its volume has doubled. Sketch the process on a P-V diagram and determine (a) the mass of air and the final temperature, (b) the work done...

  • An air-standard cycle is executed within a closed piston–cylinder system, and it consists of the following...

    An air-standard cycle is executed within a closed piston–cylinder system, and it consists of the following three processes: 1–2 V = Constant heat addition from 100 kPa and 30°C to 850 kPa 2–3 Isothermal expansion until V3 = 8.5V2 3–1 P = Constant heat rejection to the initial state Assume air has constant properties with cv = 0.718 kJ/kg·K, cp = 1.005 kJ/kg·K, R = 0.287 kJ/kg·K, and k = 1.4. Required information An air-standard cycle is executed within a...

  • *Problem 3.094 SI Air contained in a piston-cylinder assembly undergoes the power cycle shown in the...

    *Problem 3.094 SI Air contained in a piston-cylinder assembly undergoes the power cycle shown in the figure below 3.0 Isothermal process (bar) 1.4 0 0 1.0 2.142857142857 v (m3/kg) Assuming ideal gas behavior for the air, evaluate the thermal efficiency of the cycle. 1%

  • Air in a piston-cylinder assembly executes a Carnot power cycle (4 internally reversible processes, shown in...

    Air in a piston-cylinder assembly executes a Carnot power cycle (4 internally reversible processes, shown in the figure below). The isothermal expansion and compression processes occur at TH 1400 K and Tc-350 K, respectively. The pressure at the beginning and end of the isothermal compression are p4-100 kPa and pi - 500 kPa, respectively Assume the ideal gas model for the air: ai 0.717 J/g.K Mair- 28.97 g/mol kpv.air 1.4 R 8.314J /(mol K) Adiabatic Isothermal expansion Adiabatic compression Gas...

  • Consider a piston-cylinder device (system) that contains 0.06 m3 of air at 300 kPa and 125...

    Consider a piston-cylinder device (system) that contains 0.06 m3 of air at 300 kPa and 125 ̊C. (a) If the volume of air in the device increases to 0.15 m3 while the pressure remains constant, determine the work done by the system during the process. (b) If as a result of heat transfer to the surrounding, the pressure and temperature in the device drop to 240 kPa and 55 ̊C, respectively, and the piston is held such that the volume...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT