Question

The following questions contain a series of statements which you must state are either true or false. In each case, be sure to provide a brief justification for your answer to receive full marks (a) The system shown below in is second order dominant. (1 mark) S-plane ?× 2 3 10 -8 .2 (b) A closed-loop system always has a faster rise time than the corresponding open-loop system (1 mark) (c) Consider the system shown below. The step response for this system approaches 1 as t0o C(s) 1 R(s) 2s 1 (1 mark) (d) Consider the same system as in (c) above. This system is placed into the unity feedback configuration seen below. The resulting closed-loop system is marginally stable (1 mark)

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
The following questions contain a series of statements which you must state are either true or...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider the unity feedback system is given below R(S) C(s) G() with transfer function: G(s) =...

    Consider the unity feedback system is given below R(S) C(s) G() with transfer function: G(s) = K s(s + 1)(s + 2)(8 + 6) a) Find the value of the gain K, that will make the system stable. b) Find the value of the gain K, that will make the system marginally stable. c) Find the actual location of the closed-loop poles when the system is marginally stable.

  • Discuss the mathematical requirements for stability in a linear feedback system and state the Rou...

    Discuss the mathematical requirements for stability in a linear feedback system and state the Routh Stability criterion. (6 marks) (a) The open loop transfer function of a control system with unity feedback is given by: (b) 35 s(1 + Ts) (1 +0.25s) G(s) - Use Routh's criterion to determine the value of T for which the closed loop system is marginally stable. (8 marks) i Use the Nyquist criterion to confirm the values obtained in (i). (8 marks) ii Sketch...

  • Consider the unity feedback system is given below R(S) C(s) G(s) with transfer function: G() =...

    Consider the unity feedback system is given below R(S) C(s) G(s) with transfer function: G() = K(+2) s(s+ 1/s + 3)(+5) a) Sketch the root locus. Clearly indicate any asymptotes. b) Find the value of the gain K, that will make the system marginally stable. c) Find the value of the gain K, for which the closed-loop transfer function will have a pole on the real axis at (-0.5).

  • Problem 2 For the unity feedback system below in Figure 2 G(s) Figure 2. With (8+2) G(s) = (a) Sk...

    Problem 2 For the unity feedback system below in Figure 2 G(s) Figure 2. With (8+2) G(s) = (a) Sketch the root locus. 1. Draw the finite open-loop poles and zeros. ii. Draw the real-axis root locus iii. Draw the asymptotes and root locus branches. (b) Find the value of gain that will make the system marginally stable. (c) Find the value of gain for which the closed-loop transfer function will have a pole on the real axis at s...

  • 1. (10 points) o Consider the unity feedback system with open loop transfer function Ко L(s)...

    1. (10 points) o Consider the unity feedback system with open loop transfer function Ко L(s) = s(s+ 7) (s+ 3) Let Tf = 0.15 and Tm = 0.3. What value(s) of Ko produce a marginally stable system? Should K, be pushed larger or samller than those value(s) to stabilize the closed-loop system?

  • Question# 1 (25 points) For a unity feedback system with open loop transfer function K(s+10)(s+20) (s+30)(s2-20s+2...

    Question# 1 (25 points) For a unity feedback system with open loop transfer function K(s+10)(s+20) (s+30)(s2-20s+200) G(s) = Do the following using Matlab: a) Sketch the root locus. b) Find the range of gain, K that makes the system stable c) Find the value of K that yields a damping ratio of 0.707 for the system's closed-loop dominant poles. d) Obtain Ts, Tp, %OS for the closed loop system in part c). e) Find the value of K that yields...

  • 3. Given the unity feedback system, where G(s) = s(s +2) (s+3)(s +4) do the following:...

    3. Given the unity feedback system, where G(s) = s(s +2) (s+3)(s +4) do the following: (a) Sketch the root locus (b) Find the asymptotes c) Find the value of gain that will make the system marginally stable (d) Find the value of gain for which the closed-loop transfer function will have a pole on the real axis at-0.5

  • Question 1: a) Use MATLAB, plot the step repose for the following transfer functions. 48 G(s)-...

    Question 1: a) Use MATLAB, plot the step repose for the following transfer functions. 48 G(s)- (8+6)(s+8) G(s)- 52 +2s + 18 18 Question 2: a) Using MATLAB, plot Bode log-magnitude and phase plot of (s+2)(8+5) G(S) - (s +3) ($2+2s +20) Question 3: Using MATLAB Sketch the root locus of the unity feedback system shown in the figure below: a) Give the values for all critical points of interest. b) Id the system ever unstable? If so, for what...

  • Consider the following unity feedback system for Problems 2-3 R(9) —tqKAG YIS) Figure 1 Problem 2...

    Consider the following unity feedback system for Problems 2-3 R(9) —tqKAG YIS) Figure 1 Problem 2 Consider the system shown in the above figure, where G(s) = s(8+1128+1) a) Draw a Bode diagram of the open-loop transfer function G(s) when K=1. b) On your plot, indicate the crossover frequencies, PM, and GM. Is the closed-loop system stable with K=1? c) Determine the range of K for which the closed-loop systems will be stable. d) Verify your answer in (c) using...

  • C(8) for the system shown in Figure 1. R(S Find the equivalent transfer function, Geg (s)...

    C(8) for the system shown in Figure 1. R(S Find the equivalent transfer function, Geg (s) 1 Cix) Figure 1. Block diagram 2s+1 s(5s+6Ge(s) = and Figure 2 shows a closed-loop transfer function, where G(s) 2. proper H(s) K+s. Find the overall closed-loop transfer function and express is as rational function. C(s) Ea (s) Controller R(s) +/ Plant G(s) Ge (s) Feedback H(s) Figure 2. Closed loop transfer function Construct the actuation Error Transfer Function associated with the system shown...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT