Question

Two blocks with different masses are attached to either end of a light rope that passes over a light, frictionless pulley sus

0 0
Add a comment Improve this question Transcribed image text
Answer #1

cenue Common Let the acceleration of the blocks is å Ty tension in the storing PT Ma mg a n a da - metra > Mg Tama ③ AT T-mg

Add a comment
Know the answer?
Add Answer to:
Two blocks with different masses are attached to either end of a light rope that passes...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two blocks with different masses m1 and m2 and m1 is larger than m2. They are...

    Two blocks with different masses m1 and m2 and m1 is larger than m2. They are attached to either end of a light rope that passes over a light, frictionless pulley suspended from the ceiling. The mass are released from rest, and the more massive one starts to descend. After this block has descended 1.6 m, its speed is 2.2 ms-1. If the total mass is 4.1 kg, what is the mass of the heavier block m1 (unit is kg)?...

  • Two blocks are connected by a string that is wrapped around a pulley wheel. The light...

    Two blocks are connected by a string that is wrapped around a pulley wheel. The light block with mass 5.3 kg sits a flat table; the heavier block, which is twice as massive, is suspended below the pulley. There is friction acting between the lighter block and the table with a coefficient of friction 0.79. The system is released from rest. What is the speed of the blocks after the bottom block has fallen 4.2 meters in units of meters/second?...

  • The figure shows two blocks connected by a light cord over a pulley. This apparatus is...

    The figure shows two blocks connected by a light cord over a pulley. This apparatus is known as an Atwood's machine. There is no slipping between the cord and the surface of the pulley. The pulley itself has negligible friction and it has a radius of 0.12 m and a mass of 10.3 kg. We can model this pulley as a solid uniform disk. At the instant that the heavier block has descended 1.5 m starting from rest, what is...

  • The two blocks in the figure(Figure 1) are connected by a massless rope that passes over...

    The two blocks in the figure(Figure 1) are connected by a massless rope that passes over a pulley. The pulley is 15 cm in diameter and has a mass of 3.0 kg . As the pulley turns, friction at the axle exerts a torque of magnitude 0.49 N m 4.0 kg 1.0 m 2.0 kg If the blocks are released from rest, how long does it take the 4.0 kg block to reach the floor? Express your answer to two...

  • Two masses, mA = 29.0 kg and mg = 42.0 kg are connected by a rope...

    Two masses, mA = 29.0 kg and mg = 42.0 kg are connected by a rope that hangs over a pulley (as in the figure). The pulley is a uniform cylinder of radius R. 0.311 m and mass 3.4 kg. Initially, mis on the ground and mp rests 2.5 m above the ground. MA 25 m Part A If the system is now released, use conservation of energy to determine the speed of me just before it strikes the ground....

  • Review Constants part. Consider the system of two blocks shown in (Figure 1). The blocks are...

    Review Constants part. Consider the system of two blocks shown in (Figure 1). The blocks are released from rest. While the two blocks are moving, the tension in the light rope that connects them is 35.0 N. Part 6 If the work-energy theorem is applied to the two blocks considered together as a composite system, use the theorem to find the network done on the system during the 0.900 m downward displacement of the 6.00 kg block. Express your answer...

  • 3. A gun tackle consits of a light rope and two ideal pulleys. One end of...

    3. A gun tackle consits of a light rope and two ideal pulleys. One end of the rope is attached to the ceiling and wrapped around both pulleys, as depicted, while the other end is fastned to mass A. Mass B hangs off the pulley that is free to move. The second pulley is attached to the ceiling. Initially the blocks are suspended at the same distance from the ceiling and are subsequently released from rest. Determine how fast block...

  • Two blocks of not equal masses of my and m2 (with mi > m2) are connected...

    Two blocks of not equal masses of my and m2 (with mi > m2) are connected by a rope of negligible mass that hangs over a pully of negligible mass also. At the beginning the heavier block is located at h=2.0 m below the second block. When the blocks were released, they were at the same level in At=2.0 seconds. a) What was the ratio of masses of the two blocks, i.e. mu/m2? b) What is the maximum height reached...

  • Two blocks of masses m1 and m2 are connected by a light cord that passes over...

    Two blocks of masses m1 and m2 are connected by a light cord that passes over a pulley of mass M, as shown. Block m2 slides on a frictionless horizontal surface. The blocks and pulley are initially at rest. When m1 is released, the blocks accelerate and the pulley rotates. The total angular momentum of the system of the two blocks and the pulley relative to the axis of rotation of the pulley isthe same at all times.proportional to I1,...

  • The! A 4 kg block and a 6 kg block are attached to opposite ends of...

    The! A 4 kg block and a 6 kg block are attached to opposite ends of a light rope. rope hangs over a solid, frictionless pulley that has a radius of 0.50 m and a mass of 4.5 kg. The pulley's moment of inertia is 1 = - MR. 2 Find: (a) the magnitude of the tension (in N) of the rope on the end with the lighter block; (b) the magnitude of the tension (in N) of the rope...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT