Question

Air at 25 °C and 1 atm is flowing over a long flat plate with a velocity of 8 m/s. (a) Determine the distance from the leadin

0 0
Add a comment Improve this question Transcribed image text
Answer #1

CY CY Rels (to-2,5xta)YS -Eq.crorros- に

Add a comment
Know the answer?
Add Answer to:
Air at 25 °C and 1 atm is flowing over a long flat plate with a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 1: Atmospheric air at 25°C flows over both surfaces of 2 m long flat plate...

    Problem 1: Atmospheric air at 25°C flows over both surfaces of 2 m long flat plate maintained at 125°C. For upper surface, velocity of air is 1 m/s and for lower surface, velocity is 10 m/s. (Rex,c = 5x105) (a) Determine the flow condition for upper and lower surfaces. (Laminar, or turbulent). If the condition is that laminar to turbulent is taking place, calculate the position where transition from the laminar to turbulent happens. (b) Determine the rate of heat...

  • Required information Air at 25°C and 1 atm is flowing over a long flat plate with...

    Required information Air at 25°C and 1 atm is flowing over a long flat plate with a velocity of 7 m/s. The density and kinematic viscosity of air at 1 atm and 25°C are p= 1.184 kg/m3 and V = 1.562x10-5 m2/s. Calculate the distance from the leading edge of the plate where the flow becomes turbulent. The distance from the leading edge of the plate is m. Required information Air at 25°C and 1 atm is flowing over a...

  • Air at T = 5 °C is flowing over a suspended 1-m long flat plate at...

    Air at T = 5 °C is flowing over a suspended 1-m long flat plate at a velocity of 10 m/s. Determine the total drag force per-unit-width acting on the plate and location where the flow transitions to turbulent. Provide a schematic and show all work!

  • Exercise 2 Air at 20 °C and 1 atm flows over a flat plate at 50...

    Exercise 2 Air at 20 °C and 1 atm flows over a flat plate at 50 m/s. The plate is 300 cm long and is maintained at 60C. The width of the plate is 2 m. The critical Rec = 5 x 105 The properties are Conductivity k = 0.0263 W/mK, kinematic viscosity nu = v = 15.89 x 10-6 m²/s, Prandtl number is Pr=0.707 Density rho = p = 1.128 kg/m3 1. Determine the critical length Xc 2. Determine...

  • Consider 2 thin, flat plates (Plate 1 and Plate 2 shown below) with air flowing over...

    Consider 2 thin, flat plates (Plate 1 and Plate 2 shown below) with air flowing over them with a speed of 6 m/s. Plate 1 is 10 cm by 20 cm and Plate 2 is 30 cm by 20 cm. What is the ratio of the drag coefficient of Plate 2 to the drag coefficient of Plate 1 (Coz/Cp)? Take the critical Reynolds number for transition from laminar to turbulent flow to be 1,000,000. The kinematic viscosity of air (v...

  • Air at T=25°C and pressure P=1 bar flows over a square plate with a velocity V=1...

    Air at T=25°C and pressure P=1 bar flows over a square plate with a velocity V=1 m/s. This plate has a length L= 1 m and it is heated over its entire length; the plate temperature is constant Tp=100°C. The following data are given. For air: dynamic viscosity: mu = 1.9*10–5 kg/(m.s); density: rho = 1.05 kg/m3; conductivity k = 0.03 W/(m K); Specific heat Cp = 1.007 kJ/(kg K); Prandtl number Pr = 0.7 For laminar flow over a...

  • Air at a temperature of 300 K flows over one side of a flat plate of...

    Air at a temperature of 300 K flows over one side of a flat plate of width 1 m at a velocity of 20 m/s. The plate has a constant surface temperature of 350 K. Assume Re(x,c)=5x10^5. a) What is the velocity boundary layer thickness at the end of the plate if L=0.25 m? What if L=1 m? b) Calculate the drag on the plate if L=0.25 m. What is the drag if L=1 m? c) Find the heat transfer...

  • 8) Air flows over a flat plate at a velocity of 20 m/s and a temperature...

    8) Air flows over a flat plate at a velocity of 20 m/s and a temperature of 20C. The surface temperature of the plate is 134C, and the length of the plate in the direction of flow is 1.5 m. Properties of air may be taken as A-0.030 W/m-C, Pr-0.700, and a/p 2.092E-5 m/s (5% ) What is the location from the leading edge, X, where the flow becomes turbulent Re (20)15 a l Ve30s T20 T LaLS 523 m...

  • 4) Air at 101 kPa and 360 K flows at 15 m/s over a flat plate...

    4) Air at 101 kPa and 360 K flows at 15 m/s over a flat plate maintained at 300 K Assume that the transition Reynolds number is 5x10 (0.332R 12Pr1/3 Re < 5 x 105 0.029Repr0:43 5 x 105 < Re <3 x 107 Assume that k-0.03 W/( mK), 20x10* m?ls, Pr-0.7.p=1.16 kg/m a) If the plate is 2 m long, sketch the local heat transfer coefficient over the plate. Specify the functional form of h with respect tox b)...

  • Air flows with a velocity of 20 m/s over a flat plate of length 2 m....

    Air flows with a velocity of 20 m/s over a flat plate of length 2 m. The air properties are k = 0.030 W/mK, V = 20.92 x 10-6 m/s, Pr=0.700. a. What type(s) of flow (laminar/turbulent) exist on this plate? b. If the following relations are given for the laminar and turbulent local convection coefficients over the plate, haminar (x) = 20 houwbudemo (x) = .52 where x is the distance from the plate leading edge. Find the average...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT