Question

Consider 2 thin, flat plates (Plate 1 and Plate 2 shown below) with air flowing over them with a speed of 6 m/s. Plate 1 is 1

0 0
Add a comment Improve this question Transcribed image text
Answer #1

.20cm flow (9) 1 loom Flow 1 ☺ 300m f 200m → Griveni Velocity of Flow (u) = 6 m/ , 15810 1.5x10 m/s a Fer Both plate 0 andSince the flow is Lamencar , so drag Coefficient 1 is given by formula GE where hea 0.66 h Thee Esve u CD2 Oeffle 1) Three 1

Add a comment
Know the answer?
Add Answer to:
Consider 2 thin, flat plates (Plate 1 and Plate 2 shown below) with air flowing over...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Exercise 2 Air at 20 °C and 1 atm flows over a flat plate at 50...

    Exercise 2 Air at 20 °C and 1 atm flows over a flat plate at 50 m/s. The plate is 300 cm long and is maintained at 60C. The width of the plate is 2 m. The critical Rec = 5 x 105 The properties are Conductivity k = 0.0263 W/mK, kinematic viscosity nu = v = 15.89 x 10-6 m²/s, Prandtl number is Pr=0.707 Density rho = p = 1.128 kg/m3 1. Determine the critical length Xc 2. Determine...

  • Required information Air at 25°C and 1 atm is flowing over a long flat plate with...

    Required information Air at 25°C and 1 atm is flowing over a long flat plate with a velocity of 7 m/s. The density and kinematic viscosity of air at 1 atm and 25°C are p= 1.184 kg/m3 and V = 1.562x10-5 m2/s. Calculate the distance from the leading edge of the plate where the flow becomes turbulent. The distance from the leading edge of the plate is m. Required information Air at 25°C and 1 atm is flowing over a...

  • Air at 70℉ flows parallel to a smooth, thin, flat plate at 13 ns. The plate...

    Air at 70℉ flows parallel to a smooth, thin, flat plate at 13 ns. The plate is 10 6 ft long Determine whether the boundary layer on the plate is most likely laminar, turbulent, or somewhere in between (transitional). Calculate the boundary layer thickness at the end of the plate where the boundary layer is laminar everywhere and where the boundary layer is turbulent everywhere (obtained from the one seventh-power law), The kinematic viscosity of air at 70°F is v...

  • Air at T=25°C and pressure P=1 bar flows over a square plate with a velocity V=1...

    Air at T=25°C and pressure P=1 bar flows over a square plate with a velocity V=1 m/s. This plate has a length L= 1 m and it is heated over its entire length; the plate temperature is constant Tp=100°C. The following data are given. For air: dynamic viscosity: mu = 1.9*10–5 kg/(m.s); density: rho = 1.05 kg/m3; conductivity k = 0.03 W/(m K); Specific heat Cp = 1.007 kJ/(kg K); Prandtl number Pr = 0.7 For laminar flow over a...

  • Air at 25 °C and 1 atm is flowing over a long flat plate with a...

    Air at 25 °C and 1 atm is flowing over a long flat plate with a velocity of 8 m/s. (a) Determine the distance from the leading edge of the plate where the flow becomes turbulent. (b) What will be the boundary layer thickness at the end of the plate? (c) If the plate is a 2m by 2 m square, what will be the friction drag acting on the plate? Schematic Given ssumptions Find v=8m/s xcr ,FD ,δ@x=L L-2m...

  • Air at T = 5 °C is flowing over a suspended 1-m long flat plate at...

    Air at T = 5 °C is flowing over a suspended 1-m long flat plate at a velocity of 10 m/s. Determine the total drag force per-unit-width acting on the plate and location where the flow transitions to turbulent. Provide a schematic and show all work!

  • 8) Air flows over a flat plate at a velocity of 20 m/s and a temperature...

    8) Air flows over a flat plate at a velocity of 20 m/s and a temperature of 20C. The surface temperature of the plate is 134C, and the length of the plate in the direction of flow is 1.5 m. Properties of air may be taken as A-0.030 W/m-C, Pr-0.700, and a/p 2.092E-5 m/s (5% ) What is the location from the leading edge, X, where the flow becomes turbulent Re (20)15 a l Ve30s T20 T LaLS 523 m...

  • Problem 1: Atmospheric air at 25°C flows over both surfaces of 2 m long flat plate...

    Problem 1: Atmospheric air at 25°C flows over both surfaces of 2 m long flat plate maintained at 125°C. For upper surface, velocity of air is 1 m/s and for lower surface, velocity is 10 m/s. (Rex,c = 5x105) (a) Determine the flow condition for upper and lower surfaces. (Laminar, or turbulent). If the condition is that laminar to turbulent is taking place, calculate the position where transition from the laminar to turbulent happens. (b) Determine the rate of heat...

  • Air flows with a velocity of 20 m/s over a flat plate of length 2 m....

    Air flows with a velocity of 20 m/s over a flat plate of length 2 m. The air properties are k = 0.030 W/mK, V = 20.92 x 10-6 m/s, Pr=0.700. a. What type(s) of flow (laminar/turbulent) exist on this plate? b. If the following relations are given for the laminar and turbulent local convection coefficients over the plate, haminar (x) = 20 houwbudemo (x) = .52 where x is the distance from the plate leading edge. Find the average...

  • please help Question 1 1.1 If the velocity distribution of a fluid flowing over a 1m²...

    please help Question 1 1.1 If the velocity distribution of a fluid flowing over a 1m² flat plate is given by u=l+ y + y, find the m. Assume dynamic viscosity to be y=6x10*(Ns/m”). force acting on a plate at y = [5 marks] 1.2 A 2D velocity field in an incompressible flow was measured by PIV method and determined to follow the following functions u= 2x’ +2y and v=x - 4y. Check whether your measurements are correct at a...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT