Question

Q.4 (25 marks) A material is subjected to two mutually perpendicular direct stresses of 300 MPa tensile and 200 MPa compressi
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Sal Given Güven state state of stress. x= 300 MPa Ty = - 200 MPa xy = 50 mPa. Centre of Mohrs cirse c = (Forg,0) Arbitery paVI-30 Given O = 300 cow. 20= 68. si from triangle Reis 50 + (RC66) = 177.475 MPa = - Roosco + 50 = -77.475 MB Txly = Rsingo

Add a comment
Know the answer?
Add Answer to:
Q.4 (25 marks) A material is subjected to two mutually perpendicular direct stresses of 300 MPa...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. 4. A material is subjected to two mutually perpendicular strains 350 x10-6 units and -...

    1. 4. A material is subjected to two mutually perpendicular strains 350 x10-6 units and - 50 x 10-6 units together with an unknown sheer strain, if the principal strain in the material is 420 x 10 units. If E - 200 GN/m? - 0.3, determine the following. a. a) Magnitude of the shear strain b. b) The other principal strain C. c) The direction of principal strains axes d. d) The magnitude of the principal stresses 1. 5. For...

  • Required information Solve the following problems using Mohr's circle Given: P 84 MPa P 50 MPa...

    Required information Solve the following problems using Mohr's circle Given: P 84 MPa P 50 MPa Draw Mohr's circle and use it to determine the normal and shearing stresses after the element shown has been rotated through 25 clockwise. (Round the final answers to two decimal places.) Normal stresses: MPa (+ tensile; - compressive) Ox' Gy[ MPa (+tensile; - compressive) Shearing stress: Txy MPa (+CCW on the positive X-face)

  • 40 M 45 MP 50 MPA - For the given state of stress, Part A: determine...

    40 M 45 MP 50 MPA - For the given state of stress, Part A: determine analytically (using stress transformation equations): 1) the principal planes. 2) the principal stresses. 3) Sketch the stress element for the above condition 4) the orientation of the planes of maximum in-plane shearing stress, 5) the maximum in-plane shearing stress and the corresponding normal stress. 6) Sketch the stress element for the above condition Part B: Only use Mohr's circle to determine 1) the principal...

  • 40 M 45 MP 50 MPA - For the given state of stress, Part A: determine...

    40 M 45 MP 50 MPA - For the given state of stress, Part A: determine analytically (using stress transformation equations): 1) the principal planes. 2) the principal stresses. 3) Sketch the stress element for the above condition 4) the orientation of the planes of maximum in-plane shearing stress, 5) the maximum in-plane shearing stress and the corresponding normal stress. 6) Sketch the stress element for the above condition Part B: Only use Mohr's circle to determine 1) the principal...

  • I need part b please 40 M 45 MP 50 MPA - For the given state...

    I need part b please 40 M 45 MP 50 MPA - For the given state of stress, Part A: determine analytically (using stress transformation equations): 1) the principal planes. 2) the principal stresses. 3) Sketch the stress element for the above condition 4) the orientation of the planes of maximum in-plane shearing stress, 5) the maximum in-plane shearing stress and the corresponding normal stress. 6) Sketch the stress element for the above condition Part B: Only use Mohr's circle...

  • 75 MPa 125 MPa 50 MPa At a point in a machine component subjected to plane...

    75 MPa 125 MPa 50 MPa At a point in a machine component subjected to plane stress there are normal and shear stresses on horizontal and vertical planes through the point, as shown. Determine the principal stresses, the maximum in-plane shear stress and associated average normal stress at the point. Also, for each case, determine the corresponding orientation of the element with respect to the element shown.

  • Using Mohr's circle determine for the below differential element: a) the principal stresses and the plan...

    Using Mohr's circle determine for the below differential element: a) the principal stresses and the plan on which they act. Show the stresses on a properly oriented differential element. Label all stresses. b) the maximum shear stress and the plan on which they act. Show the stresses on a properly oriented differential element. Label all stresses. c) the stresses on a differential element 40 degrees clockwise from the original element. Show the stresses on a properly oriented differential element. Label...

  • A state of plane stress consists of a tensile stress of ox=3 MPa, 0,=5 MPa, and...

    A state of plane stress consists of a tensile stress of ox=3 MPa, 0,=5 MPa, and txy=-7 MPa a. Draw the original unrotated element and the corresponding 2-D Mohr's circle construction showing the x-face and y-face coordinates. b. Calculate the principal stresses, o, and O2 and their corresponding principal angles, 0p1,0p2 and show all of these on your Mohr's circle construction and a properly oriented stress element c. Calculate the maximum shear stresses, ITmax and their corresponding angles of maximum...

  • A state of plane stress consists of a tensile stress of ox=3 MPa, 0,=5 MPa, and...

    A state of plane stress consists of a tensile stress of ox=3 MPa, 0,=5 MPa, and Txy=-7 MPa a. Draw the original unrotated element and the corresponding 2-D Mohr's circle construction showing the x-face and y-face coordinates. b. Calculate the principal stresses, 01 and 02 and their corresponding principal angles, 021,092 and show all of these on your Mohr's circle construction and a properly oriented stress element. c. Calculate the maximum shear stresses, ETmax and their corresponding angles of maximum...

  • A cylindrical tank holding oxygen at 4000 kPa pressure has an outside diameter of 500 mm and a wa...

    A cylindrical tank holding oxygen at 4000 kPa pressure has an outside diameter of 500 mm and a wall thickness of 10 mm. It has been determined that a critical point on the tank is subjected to the tensile stress of 464 MPa in x-direction, compressive stress of 340 MPa in y-direction and shearing stress of 600 MPa. By using Mohr’s Circle; Sketch the plane stresses element for the critical point. Determine the principal stresses and their locations. Determine the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT